首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2016年   3篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
This paper reports on a quantitative estimation of the risk to residents at the toe of Mount Albino, a carbonatic relief covered by shallow deposits of pyroclastic soils, which threatens the municipality of Nocera Inferiore (southern Italy). The quantitative risk analysis (QRA) focuses on one type of mass transport phenomena typical for the context at hand, namely the hyperconcentrated flows. The methodological approach includes three main steps: hazard analysis, consequence analysis and risk estimation. Based on historical incident data, the hazard analysis makes use of a high-resolution digital terrain model and advanced models that incorporate relevant geological and geotechnical input data collected via in situ investigations and laboratory tests. The consequence analysis takes into account information on the exposed persons (age, gender) and their vulnerability. The estimated risk to life is calculated at the individual level (risk to the average and most exposed person). The reported procedure is one of the first QRA’s applications to instabilities which potentially affect natural slopes in Italy, and it was successfully used as technical basis for a public participatory process in Nocera Inferiore, designed and developed to support decisions about risk mitigation measures.  相似文献   
2.
3.
Promper  C.  Glade  T. 《Natural Hazards》2016,82(1):111-127
Assessments of natural hazards and risks are beneficial for sustainable planning and natural hazard risk management. On a regional scale, quantitative hazard and risk assessments are data intensive and methods developed are difficult to transfer to other regions and to analyse different periods in a given region. Such transfers could be beneficial regarding factors of global change influencing the patterns of natural hazard and risk. The aim of this study was to show the landslide exposure of different elements at risk in one map, e.g. residential buildings and critical infrastructure, as a solid basis for an in-depth analysis of vulnerability and consequent risk. This enables to overcome the data intensive assessments on a regional scale and highlights the potential hotspots for risk analysis. The study area is located in the alpine foreland in Lower Austria and comprises around 112 km2. The results show the different levels of exposure, as well as how many layers of elements at risk are affected. Several exposure hotspots can be delineated throughout the study area. This allows a decision on in-depth analysis of hotspots not only by indicated locations but also by a rank resulting from the different layers of incorporated elements at risk.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号