首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   1篇
地质学   4篇
海洋学   1篇
天文学   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2005年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Nannorrhops ritchiana ( Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage of N. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism of N. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni in N. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   
2.
Nannorrhops ritchiana (Mazari Palm) is a distinctive flora growing in the Saharo-Sindian region. It is well distributed on the ultramafic soil, derived from the Bela Ophiolite in the Khuzdar District, Balochistan, Pakistan. Quantitative estimation of Ca, Mg, Fe and Ni in soil and plant ash has been carried out. The constituents of plant ash have been discussed in relation to soil chemistry, pH, climate, mobility, average abundance in plant ash and exclusion mechanism of the flora. Relationship among Ca, Mg, Fe and Ni has been established using scattergrams to evaluate the biogeochemistry of the plant. High contents of Mg and high coefficient of biological absorption allow it to be classed as Mg-flora. Both Ca and Fe appeared to be antagonistic to Mg. The metal assemblage ofN. ritchiana nicely reflected the nature of the bed rock as being serpentinized ultramafic, and its corresponding soils. Good exclusion mechanism ofN. ritchiana did not allow it to absorb high Ni from the soil. Relatively high concentrations of Ni inN. ritchiana from the Baran Lak area can be used to localize Ni-mineralization in the study area. Statistical analyses, such as minimum, maximum, mean, mode, median, standard deviations, and coefficient of correlation, were also made to improve raw geochemical data and interpretations.  相似文献   
3.
链状亚历山大藻(Alexandrium catenella)是一种典型的产毒赤潮甲藻。甲藻曾被认为没有组蛋白,但近年来在多种甲藻中检测到全部四个核心组蛋白的活跃转录,而目前对甲藻中组蛋白表达模式与具体功能还缺乏深入的研究。本文报道了链状亚历山大藻组蛋白H3变体之一H3.c的全长ORF序列的克隆和分析;分析了链状亚历山大藻生长过程中组蛋白H3在基因和蛋白水平的表达。目前研究发现的链状亚历山大藻H3变体共三个,其中H3.b在N末端序列与其他物种差异最大,为链状亚历山大藻特有的H3变体。对数生长期的组蛋白H3在基因与蛋白水平上均活跃表达,但表达量并不会随着爆发性增长而显著变化,其中H3.b的基因表达在对数末期呈现上调;培养至衰亡期,各H3变体表达均下调,尤其在蛋白水平上呈现明显衰减。结合前期研究,本文认为链状亚历山大藻三个H3均为复制非依赖型(RI)变体,一些变体可响应伴随藻不断生长而逐渐增强的细胞密度等复杂胁迫,推测其参与某些表观遗传修饰,调控生长进程;而衰亡期基于H3的表观遗传调控受到抑制。  相似文献   
4.
The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49–3.41) and cores (4–11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58–2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.  相似文献   
5.
Groundwater beneath the alluvial plain of the Indus River, Pakistan, is reported to be widely polluted by arsenic (As) and to adversely affect human health. In 79 groundwaters reported here from the lower Indus River plain in southern Sindh Province, concentrations of As exceeded the WHO guideline value for drinking water of 10 μg/L in 38%, with 22% exceeding 50 μg/L, Pakistan's guideline value. The As pollution is caused by microbially‐mediated reductive dissolution of sedimentary iron oxyhydroxides in anoxic groundwaters; oxic groundwaters contain <10 μg/L of As. In the upper Indus River plain, in Punjab Province, localized As pollution of groundwater occurs by alkali desorption as a consequence of ion exchange in groundwater, possibly supplemented by the use for irrigation of groundwater that has suffered ion exchange in the aquifer and so has values >0 for residual sodium carbonate. In the field area in southern Sindh, concentrations of Mn in groundwater exceed 0.4 mg/L in 11% of groundwaters, with a maximum of 0.7 mg/L, as a result of reduction of sedimentary manganese oxides. Other trace elements pose little or no threat to human health. Salinities in groundwaters range from fresh to saline (electrical conductivity up to 6 mS/cm). High salinities result from local inputs of waste water from unsewered sanitation but mainly from evaporation/evapotranspiration of canal water and groundwater used for irrigation. The process does not concentrate As in the groundwater owing to sorption of As to soils. Ion exchange exerts a control on concentrations of Na, Ca, and B but not directly on As. High values of Cl/Br mass ratios (most ?288, the marine value) reflect the pervasive influence on groundwater of sewage‐contaminated water from irrigation canals through seepage loss and deep percolation of irrigation water, with additional, well‐specific, contributions from unsewered sanitation.  相似文献   
6.
7.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号