首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20776篇
  免费   4905篇
  国内免费   5142篇
测绘学   1689篇
大气科学   4163篇
地球物理   5990篇
地质学   10701篇
海洋学   2700篇
天文学   1126篇
综合类   1677篇
自然地理   2777篇
  2024年   92篇
  2023年   293篇
  2022年   890篇
  2021年   1083篇
  2020年   921篇
  2019年   1211篇
  2018年   1284篇
  2017年   1277篇
  2016年   1409篇
  2015年   1372篇
  2014年   1522篇
  2013年   1656篇
  2012年   1548篇
  2011年   1600篇
  2010年   1569篇
  2009年   1317篇
  2008年   1307篇
  2007年   1184篇
  2006年   1027篇
  2005年   899篇
  2004年   710篇
  2003年   686篇
  2002年   808篇
  2001年   732篇
  2000年   639篇
  1999年   635篇
  1998年   433篇
  1997年   438篇
  1996年   385篇
  1995年   376篇
  1994年   291篇
  1993年   306篇
  1992年   207篇
  1991年   149篇
  1990年   109篇
  1989年   110篇
  1988年   80篇
  1987年   54篇
  1986年   37篇
  1985年   38篇
  1984年   14篇
  1983年   24篇
  1982年   19篇
  1981年   11篇
  1980年   11篇
  1979年   14篇
  1978年   9篇
  1977年   4篇
  1958年   18篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
为建立高精度的边坡位移预测模型,采用相空间重构(PSR)将边坡位移时间序列数据转换为多维数据,同时构造小波核函数改进的支持向量机模型,建立PSR-WSVM模型并应用于边坡位移预测。将PSR-WSVM模型预测结果与传统支持向量机(SVM)模型、小波支持向量机(WSVM)模型和基于相空间重构的支持向量机(PSR-SVM)模型预测结果进行对比,通过平均绝对误差(MAE)、平均绝对误差百分比(MAPE)和均方根误差(RMSE)3个精度评价指标验证PSR-WSVM模型的可行性。工程实例结果表明,PSR-WSVM模型预测结果的3个精度评价指标都优于另外3种模型,边坡位移预测的精度明显提升。  相似文献   
2.
This paper studies dynamic crack propagation by employing the distinct lattice spring model (DLSM) and 3‐dimensional (3D) printing technique. A damage‐plasticity model was developed and implemented in a 2D DLSM. Applicability of the damage‐plasticity DLSM was verified against analytical elastic solutions and experimental results for crack propagation. As a physical analogy, dynamic fracturing tests were conducted on 3D printed specimens using the split Hopkinson pressure bar. The dynamic stress intensity factors were recorded, and crack paths were captured by a high‐speed camera. A parametric study was conducted to find the influences of the parameters on cracking behaviors, including initial and peak fracture toughness, crack speed, and crack patterns. Finally, selection of parameters for the damage‐plasticity model was determined through the comparison of numerical predictions and the experimentally observed cracking features.  相似文献   
3.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
4.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
5.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   
6.
Abstract— It has now been about a decade since the first demonstrations that hypervelocity particles could be captured, partially intact, in aerogel collectors. But the initial promise of a bonanza of partially‐intact extraterrestrial particles, collected in space, has yet to materialize. One of the difficulties that investigators have encountered is that the location, extraction, handling and analysis of very small (10 μm and less) grains, which constitute the vast majority of the captured particles, is challenging and burdensome. Furthermore, current extraction techniques tend to be destructive over large areas of the collectors. Here we describe our efforts to alleviate some of these difficulties. We have learned how to rapidly and efficiently locate captured particles in aerogel collectors, using an automated microscopic scanning system originally developed for experimental nuclear astrophysics. We have learned how to precisely excavate small access tunnels and trenches using an automated micromanipulator and glass microneedles as tools. These excavations are only destructive to the collector in a very small area—this feature may be particularly important for excavations in the precious Stardust collectors. Using actuatable silicon microtweezers, we have learned how to extract and store “naked” particles—essentially free of aerogel—as small as 3 μm in size. We have also developed a technique for extracting particles, along with their terminal tracks, still embedded in small cubical aerogel blocks. We have developed a novel method for storing very small particles in etched nuclear tracks. We have applied these techniques to the extraction and storage of grains captured in aerogel collectors (Particle Impact Experiment, Orbital Debris Collector Experiment, Comet‐99) in low Earth orbit.  相似文献   
7.
油田抽油机的抽油杆幌动幅度过大,是引起抽油杆断裂的一个重要因素,检测这种幌动幅度是防止抽油杆断裂的一种有效手段。设计了一种基于面阵CCD和普通半导体激光器(LD)测量这种幌动的悬点投影测量方法,通过数字卷积滤波,达到了范围为0-40mm,误差<0.2mm的技术检测指标。  相似文献   
8.
本文介绍了GDJ跟踪打印经纬仪在人造卫星的观测中如何应用计算机对多圈卫星的目视观测资料进行实时采集、处理等工作过程的原理和方法。  相似文献   
9.
Mercury (Hg) was investigated in bone tissues of skua ( Catharacta maccormick) and penguin (Pygoscelis adeliae) collected in the maritime Antarctic using atomic fluorescence spectrometry (AFS) and synchrotron radiation X-ray fluorescence (SR-XRF) method. The total levels of mercury in bone tissues of penguin and skua are much lower than those in other organs (e. g. , kidney, liver). The toxic effects of mercury in bone tissues of seabirds in polar region are not known. We have used SR- XRF method to map the distribution of trace levels of mercury in bones. The levels of mercury are found to be enriched somewhere near the periosteal surface and/or endosteal surface. The distribution of mercury shows strongly correlation with that of some essential elements and probably poses negative effect on the bone metabolism inferring from the relationship of mercury with the other elements. These studies represent a first step toward understanding the toxic effects of mercury on bone of polar animals by suggesting the possible microscopic investigation.  相似文献   
10.
中国古生教授学会微体古生物学分会举行代表大会和学术年会中国古竽物学会微体古物学分会第五次会员代表大分暨第六次不术年会于1996年1月24日到30日在福州市召开。来自全国地质、石油、煤炭的和产、科研和大学的100多位代表参加了这次大会和学术研讨。大会共...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号