首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   13篇
自然地理   1篇
  2013年   2篇
  2009年   6篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
2.
Temporal and spatial patterns of recruitment (R) and spawning stock biomass (S) variability were compared among functionally analogous species and similar feeding guilds from six marine ecosystems. Data were aggregated into four regions including the Gulf of Maine/Georges Bank, the Norwegian/Barents Seas, the eastern Bering Sea, and the Gulf of Alaska. Variability was characterized by calculating coefficients of variation and anomalies for three response variables: ln(R), ln(R/S), and stock–recruit model residuals. Patterns of synchrony and asynchrony in the response variables were examined among and between ecosystems, between- and within-ocean basins and among functionally analogous species groups using pair-wise correlation analysis corrected for within-time series autocorrelation, multivariate cross-correlation analyses and regime shift detectors. Time series trends in response variables showed consistent within basin similarities and consistent and coherent differences between the Atlantic and Pacific basin ecosystems. Regime shift detection algorithms identified two broad-scale regime shift time periods for the pelagic feeding guild (1972–1976 and 1999–2002) and possibly one for the benthic feeding guild (1999–2002). No spatial patterns in response variable coefficients of variation were observed. Results from multivariate cross-correlation analysis showed similar trends. The data suggest common external factors act in synchrony on stocks within ocean basins but temporal stock patterns, often of the same species or functional group, between basins change in opposition to each other. Basin-scale results (similar within but different between) suggest that the two geographically broad areas are connected by unknown mechanisms that, depending on the year, may influence the two basins in opposite ways. This work demonstrates that commonalities and synchronies in recruitment fluctuations can be found across geographically distant ecosystems but biophysical causes of the fluctuations remain difficult to identify.  相似文献   
3.
A hypothesis on the formation and seasonal evolution of Atlantic menhaden (Brevoortia tyrannus) juvenile nurseries in coastal estuaries is described. A series of cruises were undertaken to capture postmetamorphic juvenile menhaden and to characterize several biological and physical parameters along estuarine gradients. The two study systems, the Neuse and Pamlico rivers in North Carolina, contain important menhaden nursery grounds. Juvenile menhaden abundance was found to be associated with gradients of phytoplankton biomass as evidenced by chlorophylla levels in the upper water column. Fish abundances were only secondarily associated with salinity gradients as salinity was a factor that moderated primary production in the estuary. The persistence of spatial and temporal trends in the distribution of phytoplankton in the Neuse and Pamlico estuaries was reviewed. The review suggested that postmetamorphic juvenile menhaden modify their distribution patterns to match those created by phytoplankton biomass, which in turn makes them most abundant in the phytoplankton maxima of estuaries. Because the location of these maxima varies with the mixing and nutrient dynamics of different estuaries, so will the location of the nursery.  相似文献   
4.
Globally coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from four 100-year, high-resolution ocean model experiments (resolution less than 1 km) for the western Baltic Sea. The forcing is taken from a regional atmospheric model and a regional ocean model, imbedded into two global greenhouse gas emission scenarios, A1B and B1, for the period of 2000 to 2100 with each two realisations. Two control runs from 1960 to 2000 are used for validation. For both scenarios, the results show a warming with an increase of 0.5–2.5 K at the sea surface and 0.7–2.8 K below 40 m. The simulations further indicate a decrease in salinity by 1.5–2 practical salinity units. The increase in water temperature leads to a prolongation of heat waves based on present-day thresholds. This amounts to a doubling or even tripling of the heat wave duration. The simulations show a decrease in inflow events (barotropic/baroclinic), which will affect the deepwater generation and ventilation of the central Baltic Sea. The high spatial resolution allows us to diagnose the inflow events and the mechanism that will cause future changes. The reduction in barotropic inflow events correlates well with the increase in westerly winds. The changes in the baroclinic inflows can be consistently explained by the reduction of calm wind periods and thus a weakening of the necessary stratification in the western Baltic Sea and the Danish Straits.  相似文献   
5.
6.
Major features of four marine ecosystems were analyzed based on a broad range of fisheries-associated datasets and a suite of oceanographic surveys. The ecosystems analyzed included the Gulf of Maine/Georges Bank in the Northwest Atlantic Ocean, the Norwegian/Barents Seas in the Northeast Atlantic Ocean, and the eastern Bering Sea and the Gulf of Alaska in the Northeast Pacific Ocean. We examined survey trends in major fish abundances, total system fish biomass, and zooplankton biomasses. We standardized each time series and examined trends and anomalies over time, using both time series and cross-correlational statistical methods. We compared dynamics of functionally analogous species from each of these four ecosystems. Major commonalities among ecosystems included a relatively stable amount of total fish biomass and the importance of large calanoid copepods, small pelagic fishes and gadids. Some of the changes in these components were synchronous across ecosystems. Major differences between ecosystems included gradients in the magnitude of total fish biomass, commercial fish biomass, and the timing of major detected events. This work demonstrates the value of comparative analysis across a wide range of marine ecosystems, suggestive of very few but none-the-less detectable common features across all northern hemisphere ocean systems.  相似文献   
7.
8.
As part of a project comparing the structure and function of four marine ecosystems off Norway and the United States, this paper examines the oceanographic responses to climate forcing, with emphasis on recent changes. The four Northern Hemisphere ecosystems include two in the Pacific Ocean (Bering Sea and Gulf of Alaska) and two in the Atlantic Ocean (Georges Bank/Gulf of Maine and the Barents/Norwegian Seas). Air temperatures, wind forcing and heat fluxes over the four regions are compared as well as ocean hydrography and sea-ice conditions where seasonal sea ice is found. The long-term interannual variability in air temperatures, winds and net heat fluxes show strong similarity between adjacent ecosystems and within subregions of an ecosystem, but no significant correlations between Pacific and Atlantic ecosystems and few across the Atlantic. In spite of the lack of correlation between climate forcing and ocean conditions between most of the ecosystems, recent years have seen record or near record highs in air and sea temperatures in all ecosystems. The apparent causes of the warming differ. In the Atlantic, they appear to be due to advection, while in the Pacific temperatures are more closely linked to air-sea heat exchanges. Advection is also responsible for the observed changes in salinity in the Atlantic ecosystems (generally increasing salinity in the Barents and Norwegian Seas and decreasing in the Gulf of Maine and Georges Bank) while salinity changes in the Gulf of Alaska are largely related to increased local runoff.  相似文献   
9.
The relationship between above-ground net primary productivity (ANPP) and actual evapotranspiration (AE) has been previously shown by Rosenzweig (1968) to be significant for a variety of mainly temperate terrestrial ecosystems. Our study of ANPP and AE data from the humid tropics showed that AE remains a useful predictor of ANPP in tropical rainforest environments. However, we also noted that 80% of the tropical rainforest data points were depressed below Rosenzweig's original regression line. We attribute these lower-than-predicted ANPP values to transpiration losses and rainfall interception losses that do not result in a corresponding production of biomass.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号