首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   4篇
海洋学   2篇
自然地理   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
  1996年   1篇
  1993年   1篇
  1978年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Investigating adsorption of methyl parathion on the activated carbons Filtrasorb 400 and F 44 and on the adsorption polymer Wofatit Y 77 we found a stronger adsorption on the carbons at smaller concentration whereas the resin has the larger capacity at higher concentration. Adsorbents were regenerated through hydrolysis of the pesticide at pH = 11.7. The velocity of hydrolysis in the adsorbed state is reduced to a tenth of that in solution. However, a transport resistance in the pores of adsorbents seems to be negligible as may be concluded from the very small measured particle diameter dependence of the velocity constants. In adsorption-regeneration measurements the capacity of the adsorbents stabilized at about 70% of that of the fresh adsorbents.  相似文献   
3.
Significant effort has been made to generate a homogeneous database on wave overtopping consisting of more than 10,000 irregular wave overtopping tests from more than 160 independent projects or test series, each described by means of 31 parameters. Many coastal structures, including dikes, rubble mound breakwaters, berm breakwaters, caisson structures and combinations have been considered and have been schematised for inclusion in the database. All these overtopping tests are represented by over 300,000 numbers in the database.  相似文献   
4.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   
5.
Understanding the timing of mountain glacier and paleolake expansion and retraction in the Great Basin region of the western United States has important implications for regional-scale climate change during the last Pleistocene glaciation. The relative timing of mountain glacier maxima and the well-studied Lake Bonneville highstand has been unclear, however, owing to poor chronological limits on glacial deposits. Here, this problem is addressed by applying terrestrial cosmogenic 10Be exposure dating to a classic set of terminal moraines in Little Cottonwood and American Fork Canyons in the western Wasatch Mountains. The exposure ages indicate that the main phase of deglaciation began at 15.7 ± 1.3 ka in both canyons. This update to the glacial chronology of the western Wasatch Mountains can be reconciled with previous stratigraphic observations of glacial and paleolake deposits in this area, and indicates that the start of deglaciation occurred during or at the end of the Lake Bonneville hydrologic maximum. The glacial chronology reported here is consistent with the growing body of data suggesting that mountain glaciers in the western U.S. began retreating as many as 4 ka after the start of northern hemisphere deglaciation (at ca. 19 ka).  相似文献   
6.
7.
8.
9.
Jose Luis Antinao  John Gosse   《Geomorphology》2009,104(3-4):117-133
The distribution and age of large (> 0.1 km2) Pliocene to recent rockslides in the Chilean Cordillera Principal (32–34.5 S), the Southern Central Andes, has been analyzed to determine the rockslide triggering mechanisms and impact on regional landscape evolution. Most of the rockslides appear in the western Cordillera Principal and cluster along major geological structures. Variographic analyses show spatial correlation between rockslides, geological structures and shallow seismicity. A relative chronosequence was calibrated with existing 14C and 40Ar/39Ar dates and new cosmogenic nuclide exposure ages for selected rockslides. Rockslide-induced sediment yield was estimated with empirical relations for rockslide area distributions. Throughout the Quaternary, rockslides have delivered sediment to streams at rates equivalent to denudation rates of 0.10 ±0.06 mm a− 1, while estimates using short term (20 a) seismicity records are 0.3− 0.2+ 0.6 mm a− 1. The estimates of sediment transfer and the spatial distribution of rockslides reflect a landscape in which tectonic and geological controls on denudation are more significant than climate.  相似文献   
10.
We report new mapping, soils, survey, and geochronologic (luminescence, U-series, and cosmogenic-nuclide) data from Pleistocene deposits in the arid setting of eastern Grand Canyon. The result is a stratigraphic framework of inset fill gravels and associated terraces that provide a record of the responses of hillslopes, tributary streams, and the Colorado River to the last 400 kyr of glacial–interglacial climate change. The best-preserved last 80 kyr of this record indicates a stratigraphic–chronologic disconnect between both deposition and incision along the Colorado River versus along the trunks of local tributaries. For example, the Colorado River finished aggrading and had already begun incising before the main pulse of aggradation in the trunks of local catchments during Marine Isotope Stage 3, and then tributary incision followed during the millennial-scale fluctuations of the last glacial epoch, potentially concurrent with mainstem aggradation. The mainstem record appears to broadly correlate with regional paleoclimate and upstream geomorphic records and thus may be responding to climatic–hydrologic changes in its mountain headwaters, with aggradation beginning during full-glacial times and continuing into subsequent interglacials. The contrasting lag time in responses of the dryland catchments within Grand Canyon may be largely a function of the weathering-limited nature of hillslope sediment supply.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号