首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   2篇
地球物理   12篇
地质学   13篇
海洋学   3篇
综合类   1篇
自然地理   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1974年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Evaluation of slope stability, especially in the absence of a proper bed such as marine soils, is one of the most important issues in geotechnical engineering. Using geogrid layers to enhance the strength and stability of embankments is regarded as a commendable stabilization method. On the other hand, groundwater level erratically fluctuates in coastal areas. Therefore, the aim of this research is to study the effects of groundwater level changes on stability of a geogrid-reinforced slope on loose marine soils in Qeshm Island, Iran. At first, geotechnical properties of the site were obtained by comprehensive series of geotechnical laboratory and in situ tests. Then, by simultaneous changes of groundwater level and several parameters such as embankment slope, loading, geogrid length, geogrid number, and tensile strength of geogrid, different characteristics such as embankment safety factor (SF), vertical and horizontal displacements at embankment top and embankment base were studied. It was observed that groundwater level had significant effects on behavior of the embankment. For most of the observations, by decreasing the groundwater level, the displacements decreased and consequently safety factor increased. Increasing the length, number, and tensile strength of geogrid led to the reduction of displacements and an increase in the safety factor.  相似文献   
2.
3.
The Izmit Bay is an elongated semi-enclosed bay in the Marmara Sea. It is being increasingly polluted by both domestic and industrial waste discharge since 1970’s. A monitoring program was conducted between 1999-2000 to document the state of pollution in the bay. This includes the effect of Marmara (Izmit) earthquake (magnitude 7.4) that occurred in August 1999. A stable two-layer ecosystem exists in the bay throughout the year due to continuous inflows of the saltier Mediterranean and brackish Black Sea waters to the Marmara basin. Therefore, the principal biochemical characteristics of the bay are governed by the two-layer flow system over the basin. Dissolved oxygen (DO) is generally at a saturated levels in the surface layer which is 10 to 15 m thick, but it is depleted to 60–70 μM in the lower layer, exhibiting a steep gradient in the sharp halocline. When the earthquake occurred, great loads of industrial wastes were released into the bay surface waters, which enhanced primary production in the upper layer and thus large export of particulate organic matter to lower layer and eventually to the bottom. Accordingly, DO was consumed and anoxic condition was established even in the upper layer/halocline interface, the halocline and bottom waters of the eastern and central bay. In this period, concurrent increases were observed in phosphate and ammonia contents at the halocline and in deep waters whilst the nitrate was almost consumed via denitrification processes in the anoxic water. Recently, the industrial C, N and P loads increased by as much as 8 fold within five years (1995–2000) whilst domestic inputs increased by 50%. Total organic matter discharged to the bay increased more than double within the last 15 years. Besides, most factories in the region release toxic wastes into the bay after only partial treatment.  相似文献   
4.
P‐wave data from a time‐lapse 3D OBC survey have been analysed to estimate and interpret azimuthal seismic anisotropy. This is achieved by careful processing to preserve the azimuthal signature. The survey images a major reservoir body in a channelized turbidite field in the Gulf of Mexico. Three distinct and significant anisotropy anomalies are discovered on or around this particular ‘4500‐ft sand’, all of which change intensity but not orientation with hydrocarbon production. These anomalies are distributed along the highest concentration of cumulative sand thickness, with their symmetry axes aligned with the main channel axis. We suspect that this time‐lapse anisotropy could be caused by the alignment of the depositional grain fabric. Theoretical calculation predicts that this mechanism, when combined with fluid‐saturation changes, can generate the observed pattern of behaviour. If further supported by other researchers, this result would indicate that appropriately designed seismic surveys could be a useful tool for palaeo‐direction studies in clastic reservoirs and also a useful constraint for directional permeability in the reservoir flow simulation model.  相似文献   
5.
6.
7.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   
9.
The removal of volatile organic compounds from biological treatment processes occurs through several mechanisms. These include biodegradation, adsorption onto solids, and air stripping or volatilization to the atmosphere. Volatilization results in fugitive emissions to the atmosphere, which is largely uncontrolled. Recent regulations have called for increased evaluation and control of inadvertent volatile organic compounds emissions from treatment processes. The use oxygen as a parallel volatile compound is extremely useful for prediction of volatile organic compounds removal by air stripping. In this study, the simultaneous biodegradation and air stripping of volatile organic compounds, based on steady state mass balance are examined and a general approach to estimating the dominant removal mechanism is developed. A Monte Carlo simulation technique was used to estimate air stripping over a wide range of operating conditions. Several volatile organic compounds were selected for this study. The results showed the values drived from the model correspond with the experimental data for benzene, toluene, methylene chloride, trichloroethylene, and methyl isobutyl ketone.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号