首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   8篇
地球物理   1篇
地质学   9篇
海洋学   4篇
天文学   9篇
自然地理   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   4篇
  1990年   1篇
排序方式: 共有24条查询结果,搜索用时 406 毫秒
1.
The growth and dissolution behaviour of accessory phases (and especially those of geochronological interest) in metamorphosed pelites depends on, among others, the bulk composition, the prograde metamorphic evolution and the cooling path. Monazite and zircon are arguably the most commonly used geochronometers for dating felsic metamorphic rocks, yet crystal growth mechanisms as a function of rock composition, pressure and temperature are still incompletely understood. Ages of different growth zones in zircon and monazite in a garnet‐bearing anatectic metapelite from the Greater Himalayan Sequence in NW Bhutan were investigated via a combination of thermodynamic modelling, microtextural data and interpretation of trace‐element chemical ‘fingerprint’ indicators in order to link them to the metamorphic stage at which they crystallized. Differences in the trace‐element composition (HREE, Y, EuN/Eu*N) of different phases were used to track the growth/dissolution of major (e.g. plagioclase, garnet) and accessory phases (e.g. monazite, zircon, xenotime, allanite). Taken together, these data constrain multiple pressure–temperature–time (P–T–t) points from low temperature (<550 °C) to upper amphibolite facies (partial melting, >700 °C) conditions. The results suggest that the metapelite experienced a cryptic early metamorphic stage at c. 38 Ma at <550 °C, ≥0.85 GPa during which plagioclase was probably absent. This was followed by a prolonged high‐T, medium‐pressure (~600 °C, 0.55 GPa) evolution at 35–29 Ma during which the garnet grew, and subsequent partial melting at >690 °C and >18 Ma. Our data confirm that both geochronometers can crystallize independently at different times along the same P–T path and that neither monazite nor zircon necessarily provides timing constraints on ‘peak’ metamorphism. Therefore, collecting monazite and zircon ages as well as major and trace‐element data from major and accessory phases in the same sample is essential for reconstructing the most coherent metamorphic P–T–t evolution and thus for robustly constraining the rates and timescales of metamorphic cycles.  相似文献   
2.
位于西天山别珍套-科古琴晚古生代岛弧西段的喇嘛苏铜矿床是区内最大的铜矿床,与成矿作用有着密切关系的斑岩体为英云闪长斑岩、花岗闪长斑岩,是同源岩浆分异演化的产物,且花岗闪长斑岩可能属于岩浆演化晚期的产物。本区成矿斑岩的主量、微量元素和Sr-Nd同位素地球化学特征表明,其富集大离子亲石元素,而相对亏损高场强元素,出现了较为明显的Ta、Nb负异常,初始锶同位素ISr和εNd(t=390Ma)值分别为0.7072~0.7076和-0.32~0.17,显示壳幔混合源的特征,利用Sr和Nd同位素估算其源区物质约有50%来源于地壳。岩石地球化学特征指示了其为典型钙碱性火山弧花岗岩,暗示其形成于大陆弧环境。结合区域地质背景,推测本区成矿斑岩是在洋壳俯冲作用下发生部分熔融,交代原先的地幔楔,并混合了部分下地壳的物质,经历分离结晶作用的产物,其形成可能与晚古生代准噶尔洋板块向南的俯冲作用有关。结合东西天山的成矿斑岩的地球化学特征对比研究,岩浆源区的差别可能导致不同类型斑岩型矿床的形成,斑岩型铜矿床的形成较斑岩型钼矿床可能有更少的地壳物质贡献。  相似文献   
3.
Groundwater plays an important role in New Zealand water supplies and hence monitoring activities are conducted regularly. Most monitoring programmes aim to evaluate groundwater chemistry and almost completely overlook the microbial component in this ecosystem. In our present study, the bacterial community structure of groundwater in the Wairarapa Valley was examined using the terminal restriction fragment length polymorphism (T-RFLP), and relationships between bacterial community structure and groundwater chemistry, aquifer confinement and groundwater usage were explored. In addition, the results from this study were compared with a previous T-RFLP survey of the same area in an attempt to detect changes in bacterial community structure over time. The data obtained suggested that bacterial community structure was related to groundwater chemistry, especially to redox conditions. Species composition showed minimal variation over time if groundwater chemistry remained unchanged. These findings reflect the potential of using bacterial communities as biological indicators to evaluate the health of groundwater ecosystems. We suggest that it is important to include this type of broad bacterial diversity assessment criteria into regular groundwater monitoring activities.  相似文献   
4.
5.
6.
位于中国南天山西侧阔克萨彦岭一带的川乌鲁碱性杂岩体,与该区川乌鲁铜金多金属矿床有着直接的成因联系,该杂岩体由早期的辉长岩—闪长岩岩、主期的二长岩—正长岩和晚期的正长花岗斑岩脉组成,各期岩石在矿物组成和化学成分上有明显的变化。从早到晚,SiO2含量增加,变化范围是50.52%~70.64%;全碱含量先增后减,在SiO2含量小于61.69%时,随SiO2含量增加而增加,而当SiO2含量大于61.69%时,与SiO2含量负相关。在AR-SiO2图解上,大多样品落入碱性区间,在A/CNK-A/NK图解上表现出由准铝质向过碱性演化的趋势。微量元素表现为大离子亲石元素相对高场强元素富集,Rb、Ba、Th、Sr等元素的相对富集和Nb、Ta、P、Ti等元素的负异常。稀土元素表现为轻稀土相对富集的特征,其(La/Yb)N为14.13~25.09,具有Eu的正异常或极微弱的Eu负异常。一些元素比值的线性关系暗示了该杂岩体为岩浆混合成因,基性岩浆的源区为富水的岩石圈地幔,而酸性岩浆是中下地壳中性火成岩在含饱和水条件下部分熔融的产物。这些性质指示川乌鲁杂岩体是在后碰撞拉张环境中由岩石圈地幔熔融的基性岩浆的底侵作用导致地壳的熔融以及后期的岩浆混合作用有关。  相似文献   
7.
We describe the current high level interfaces used for communicating with the Robonet‐1.0 Homogeneous Telescope Network. This is a network of three telescopes, the Liverpool Telescope and the Faulkes Telescopes (North and South). We describe our use of RTML and web‐services to enable control of the network by intelligent agents. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
8.
Present-day along-strike heterogeneities within the Himalayan orogen are seen at many scales, from variations within the deep architecture of the lithospheric mantle, to differences in geomorphologic surface processes. Here, we present an internally consistent petrochronologic dataset from the Himalayan metamorphic core(HMC), in order to document and investigate the causes of along-strike variations in its Oligocene-Miocene tectonic history. Laser ablation split-stream analysis was used to date and characterise the geochemistry of titanite from 47 calc-silicate rocks across >2000 km along the Himalaya.This combined U-Pb-REE-Zr single mineral dataset circumvents uncertainties associated with interpretations based on data compilations from different studies, mineral systems and laboratories, and allows for direct along-strike comparisons in the timing of metamorphic processes. Titanite dates range from ~30 Ma to 12 Ma, recording(re-)crystallization between 625 ℃ and 815 ℃. Titanite T-t data overlap with previously published P-T-t paths from interleaved peltic rocks, demonstrating the usefulness of titanite petrochronology for recording the metamorphic history in lithologies not traditionally used for thermobarometry. Overall, the data indicate a broad eastward-younging trend along the orogen.Disparities in the duration and timing of metamorphism within the HMC are best explained by alongstrike variations in the position of ramps on the basal detachment controlling a two-stage process of preferential ductile accretion at depth followed by the formation of later upper-crust brittle duplexes.These processes, coupled with variable erosion, resulted in the asymmetric exhumation of a younger,thicker crystalline core in the eastern Himalaya.  相似文献   
9.
The metamorphic core of the Himalaya is composed of Indian cratonic rocks with two distinct crustal affinities that are defined by radiogenic isotopic geochemistry and detrital zircon age spectra. One is derived predominantly from the Paleoproterozoic and Archean rocks of the Indian cratonic interior and is either represented as metamorphosed sedimentary rocks of the Lesser Himalayan Sequence(LHS) or as slices of the distal cratonic margin. The other is the Greater Himalayan Sequence(GHS) whose provenance is less clear and has an enigmatic affinity. Here we present new detrital zircon Hf analyses from LHS and GHS samples spanning over 1000 km along the orogen that respectively show a striking similarity in age spectra and Hf isotope ratios. Within the GHS, the zircon age populations at 2800-2500 Ma,1800 Ma, 1000 Ma and 500 Ma can be ascribed to various Gondwanan source regions; however, a pervasive and dominant Tonianage population(~860-800 Ma) with a variably enriched radiogenic Hf isotope signature(eHf = 10 to-20) has not been identified from Gondwana or peripheral accreted terranes. We suggest this detrital zircon age population was derived from a crustal province that was subsequently removed by tectonic erosion. Substantial geologic evidence exists from previous studies across the Himalaya supporting the Cambro-Ordovician Kurgiakh Orogeny. We propose the tectonic removal of Tonian lithosphere occurred prior to or during this Cambro-Ordovician episode of orogenesis in a similar scenario as is seen in the modern Andean and Indonesian orogenies, wherein tectonic processes have removed significant portions of the continental lithosphere in a relatively short amount of time. This model described herein of the pre-Himalayan northern margin of Greater India highlights the paucity of the geologic record associated with the growth of continental crust. Although the continental crust is the archive of Earth history, it is vital to recognize the ways in which preservation bias and destruction of continental crust informs geologic models.  相似文献   
10.
The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ± 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with an error weighted mean of 4.1 ± 0.2 mm/ka. Three of these surfaces yield model exposure-plus-burial ages of 295− 71+ 84, 520− 141+ 178, and 626− 85+ 102 ka. A vertical cosmogenic nuclide profile across the oldest sampled tor indicates a long-term emergence rate of 31 ± 2 mm/ka. These findings show that dry-based ice caps are capable of substantially eroding tors by entraining blocks previously detached by weathering processes. Bedrock surfaces and erratic boulders in such settings are likely to have nuclide inheritance and may yield erroneous (too old) exposure ages. While many Cairngorm tors have survived multiple glacial cycles, rates of regolith stripping and bedrock erosion are too high to permit the widespread preservation of pre-Quaternary rock surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号