首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   4篇
测绘学   2篇
大气科学   2篇
地球物理   10篇
地质学   15篇
海洋学   3篇
天文学   4篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
准噶尔盆地西北缘前陆冲断带是剖析西准噶尔地区盆山耦合关系、沉积体系发育的关键地段。该区二叠系佳木河组为火山岩、火山碎屑岩、碎屑岩组成的混积地层。火山岩与碎屑岩组成的地层单元有广义上的成因联系,因为它们都属于史密斯地层,并均具有旋回特征。针对不同的岩性区:碎屑岩岩性区、火山岩与碎屑岩共存区、纯火山岩区,找出由于构造火山活动、相对湖平面变化等因素形成的可作为层序界面的不整合面。碎屑岩岩性区不整合面在地震剖面上主要表现为削蚀、底超、双向下超、顶超、下切谷等;共存区为同时发育火山岩与碎屑岩的削蚀带,不整合面类型较复杂;纯火山岩区表现为相对湖平面下降形成的削蚀不整合面。故可以通过地震、钻测井资料识别各类不整合面,并依据火山喷发方式、火山旋回、沉积旋回,按照不同对比原则进行经典层序地层学划分。  相似文献   
2.
为了明确松辽盆地三肇凹陷扶余油层储层致密化与油气充注相关性,利用微米CT、流体包裹体显微分析、盆地模拟等方法,研究了该储层微观孔喉特征,且定量分析了其成藏期。根据储层孔隙演化信息分析了研究区储层致密化过程和油气成藏的关系。结果发现:三肇凹陷扶余致密储层岩石类型以长石岩屑砂岩和岩屑长石砂岩为主,孔喉特征表现为窄喉道、宽孔隙、孔喉配置差、微细喉道总体积大等特征。压实作用和胶结作用为储层致密化重要成因,储层致密时间应该在嫩江组末之前。流体包裹体分析结果表明三肇凹陷扶余储层油充注分为早期和晚期,相应的充注时间分别距今77~74 Ma、67~65 Ma,分别对应于嫩江组沉积期和明水组沉积末期。综合对比扶余油层油气成藏历史和储层孔隙演化特征,认为原油充注发生储层致密化之后,即先致密后成藏。  相似文献   
3.
The effect of variations in time of the zonal flow is investigated by the study of a simplified truncated model of a barotropic atmosphere in the presence of an oscillating zonal forcing. Long-time numerical simulations of a triadic model in spherical geometry are carried out for various values of both the frequency and the amplitude of the oscillating part of the zonal forcing. It is found that the reaction of the system to simple sinusoidal forcing is characterized, as happens for strongly nonlinear systems, by complicated trajectories in the phase-space and that the spectrum of the zonal component is much more complicated than that of the forcing function, with interesting relative maxima in the range of very low climatological frequencies. Moreover it is shown that, for proper values of both the frequency and the amplitude of the sinusoidally oscillating part of the forcing function, our simplified model of the large-scale planetary circulation oscillates between an essentially zonal regime (a flow pattern dominated by the zonal flow component) and a wave regime (a flow pattern characterized by significant values of the meridional component of the velocity field associated with the wave components). The transitions between the two regimes are strongly asymmetric: in fact, the time needed for a wave-like flow to evolve into an essentially zonal one is, in the limit of our model, typically 4 to 5 times greater than that needed for the inverse transition. The results are intuitively interpreted in the limit of very long periods of the oscillations of the forcing function. Other interesting features of the results are considered.  相似文献   
4.
The contents of the moderately volatile elements Ga, Ge, Cu and Sb in ordinary chondrites give us some clues with regard to the metal-silicate fractionation process. Their concentration in coexisting magnetic and non-magnetic portions of members of each ordinary chondrite group will be discussed. Germanium and Sb are mostly siderophilic, but Ga is strongly lithophilic in unequilibrated chondrites; its partition coefficient between magnetic and non-magnetic portions is positively correlated with petrologic type in L and LL chondrites, but not in H4–6 chondrites. From 25 to 50% of the total Cu is found in the non-magnetic fraction of chondrites, but there is no correlation between Cu content and petrologic type. The abundances of Ga, Cu and Sb (relative to Si) are constant in ordinary chondrites, independent of the amount of metal present, indicating that these elements were not in solid solution in the metal phase of chondrites when the metal-silicate fractionation process occurred. Germanium, which is the most volatile among the four elements analyzed, is more abundant in H than in L and LL chondrites, indicating that it was fractionated by this process. Nebular oxidation processes can be responsible for the behavior of Ga if this element was in oxidized form when loss of metal occurred, but cannot explain the results for Cu and Sb which are predicted to condense as metals and accrete mostly in metallic form. It is possible that Cu and Sb, upon condensation, did not form solid solutions with metallic Ni-Fe until after the separation of metal from silicates took place.  相似文献   
5.
The mineralogy, elemental and isotopic composition of the Shaw meteorite indicate that it is a highly metamorphosed L-group chondrite which has lost a portion of its metal and sulfide. The metal which remains has an unusual composition relative to that in other L-group chondrites. It is enriched in Ga, Ge, Ir, Mo, Os, Pt, Re and Ru and depleted in As, Au, Cu and Sb. A comparison of the relative enrichments and depletions in Shaw to those observed in San Cristobal, the extreme end-member of group IAB iron meteorites, shows that the metal phases in these two meteorites have complementary compositions. This implies that the metal in Shaw represents the residual solid of a partial melting process while the missing metal, which drained away, may have gone to form an iron meteorite, like San Cristobal.  相似文献   
6.
通过对冀北滦平盆地下白垩统西瓜园组沉积地层的实地考察,发现盆地内发育丰富的重力驱动作用沉积物。文中描述西瓜园组发育的滑动和滑塌现象,指出露头剖面中存在的挤压变形现象并非构造成因,而是由于滑动块体和滑塌块体前端的挤压应力环境造成的。在介绍西瓜园组重力流沉积发育环境的基础上,对露头中存在的若干重力流沉积进行了描述,并使用砂质碎屑流这一概念对这些现象进行了较为合理的成因解释。通过对滑动和滑塌(重力块体运动)和砂质碎屑流—浊流(重力流)沉积物研究,结合前人对该地区冲积扇—扇三角洲的研究成果,认为重力驱动作用是滦平盆地下白垩统西瓜园组沉积时期主要的搬运机制。  相似文献   
7.
<正>1 Introduction Petroleum accumulations from the Earth’s crust can be grouped into conventional and unconventional ones.The history of the world’s petroleum exploration is a history from the exploration of conventional accumulations to that of unconventional ones.Nevertheless,petroleum accumulation is actually a contrary process starting from  相似文献   
8.
鄂尔多斯盆地三叠系延长组长7油层组发育富有机质页岩和泥岩,目前已成为鄂尔多斯盆地页岩油气勘探的重要层位。综合岩心精细描述、薄片微观结构观察和粒度分析结果,将富有机质页岩和泥岩划分为黑色页岩岩相、纹层状泥岩岩相、粉砂质泥岩岩相。粉砂质泥岩岩相的脆性矿物含量高于黑色页岩岩相和纹层状泥岩岩相,后者比前者具有更高的黄铁矿含量,3种岩相的黏土矿物含量较接近。黑色页岩岩相有机质丰度高,有机质类型以I型干酪根为主,是最有利的富有机质岩相类型,其次为纹层状泥岩岩相。长7油层组沉积时期水体为分层的厌氧环境,有利于有机质的保存,低等水生生物是主要的母质来源。黑色页岩岩相和纹层状泥岩岩相形成于安静、缺少陆源碎屑影响的深湖环境下;粉砂质泥岩岩相形成于受陆源碎屑频繁影响的环境,有较多的陆源高等物质输入湖盆中,造成有机质类型复杂。将岩心精细描述和测井信息紧密结合,揭示了各类岩相纵向发育特征。受基准面变化和沉积物供给能力影响,长73以黑色页岩岩相和纹层状泥岩岩相为主,长72和长71以纹层状泥岩岩相和粉砂质泥岩岩相为主。长73暗色泥岩和页岩的岩相类型好,发育页理缝和纹层缝,有机质类型好、丰度高,是最有利的页岩油气勘探目的层系。  相似文献   
9.
The rare mineral roedderite, (Na1.09 K0.89 Ca0.02)2.00 (Mg4.71 Fe0.27)4.98 (Si11.80 Al0.09)11.89 O30 has been found in accessory amounts in the highly unequilibrated enstatite chondrite, Qingzhen. It occurs in association with minor amounts of albite and SiO2 as inclusions within the metal or sulfide phases of metal-sulfide assemblages. The roedderite crystals are connected through oxide and silicate veins to the surrounding matrix. The presence of glass coated vesicles on the surface of the assemblages strongly suggests that roedderite originated in the presence of a fluid phase, presumably during post-accretional planetary processes.  相似文献   
10.
The Qingzhen (EH3) chondrite contains a population of spheroidal metal-sulfide nodules, which display textural evidence of reheating and melting. Evidence of metal sulfuration is also present, suggesting replacement of metal by sulfide during melting. This process has led to the nucleation of perryite along metal-sulfide interfaces. Gallium-bearing sphalerite and a Cu-sulfide of composition intermediate between chalcopyrite and cubanite occur as inclusions within the metal of some nodules. Other phases present are: kamacite, troilite, Ga-free sphalerite, niningerite, perryite, schreibersite, oldhamite, Cr-sulfide (minerals A and B), djerfisherite, SiO2, albite and enstatite. The Ga-bearing sphalerite may have formed by injection of molten sulfide droplets into the metal followed by subsolidus diffusion of Ga from the metal into the sulfide. The latter may occur because of Ga supersaturation in the metal during progressive sulfuration and its decreased affinity for the metal phase during cooling below the taenite-kamacite transition point.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号