首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
大气科学   8篇
地球物理   2篇
地质学   2篇
海洋学   1篇
天文学   45篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1998年   2篇
  1990年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1969年   2篇
排序方式: 共有58条查询结果,搜索用时 203 毫秒
1.
The Triana PlasMag Faraday Cup (FC) will be able to determine speed, flow angles, temperature, and density of the main solar wind ion species with a time resolution of better than one second. Thus, the Triana PlasMag FC will enable resolution of spatial structures as small as a few hundred kilometers as the structures convect past the spacecraft. Under typical solar wind conditions, that size is comparable to a few proton gyroradii. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
3.
4.
The ion composition instrument (ICI) on ISEE-3 has observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km s–1. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of3He flares occurred during this time.The long-term average4He++/3He++ flux ratio R, was 2050 ± 200, a agreement with a previously reported result obtained using part of this data set, and in very good agreement with the previous measurements made over much shorter periods of time with the foil technique. The R values for 6-month intervals show statistically significant differences. The highest of these values is 2300 and coincides with the solar maximum of cycle 21 indicating that at solar maximum there may be changes in the character and rate of occurrence of short-term variations in R. We also find that R drops under conditions of low proton flux in the solar wind, and that it is high when solar wind speeds are lowest.At solar wind speeds above 400 km s–1 R is nearby constant at about 2000; at lower speeds it is larger and more variable, in agreement with the idea that the sources of high and low speed wind are different. At times of sector boundary current sheet crossings, identified with coronal streamers, there is a characteristic rise in the value of R indicating an encounter with a plasma with reduced3He++ abundance. Autocorrelations have been computed for4He++ and3He++ and indicate correlation times of about 14 and 20 hr, respectively. Periods of duration of about one day whenR is less than 1000 tend to coincide with the observation of compound streams.The possibility of detectable increases in3He++ flux in plasma which left the Sun at the time of3He flares has been investigated, but no significant increase was seen.  相似文献   
5.
Environmental proxies of soil erosion on Iceland, and oceanographic conditions on the adjacent shelf, were measured on a 50 cm box core taken from the southwest Iceland shelf in 1993 during cruise 93030 of the Canadian ship, CSS Hudson. These data, covering the last several centuries, are compared with the documentary record of sea-ice changes around Iceland since A.D. 1600. The site is under the influence of the Irminger Current, which carries warm, saline, Atlantic water northward along the shelf. Because of the relative warmth of this current, sea ice rarely occurs off southwest Iceland, even during the most severe sea-ice intervals of the historical record. In severe sea-ice years, however, the ice drifts clockwise around Iceland from the northeast and east and, in rare cases, reaches the southern coasts (Ogilvie, 1992). The chronology of the core was established by converting the basal radiocarbon date to calendar years and assuming a linear sedimentation rate from the base of the core to the year of collection, 1993. Organic carbon, stable C and O isotope ratios, planktonic foraminiferal assemblages, and sediment magnetic parameters were measured on samples from the core, plotted against calendar years and compared to the Icelandic sea-ice index. The environmental proxies suggest that increased soil erosion, reduced salinity, and, possibly, decreased marine productivity prevailed during the severe sea-ice interval lasting from the last quarter of the eighteenth century to around 1920. Such a situation could develop with climatic cooling, increased storminess, and loss of vegetation cover to stabilise the soil. Although the core site generally lies outside the sea-ice limits, the evidence clearly shows the influence of sea ice and fresh water, and is sensitive to the overall climatic deterioration manifested by the sea-ice record.  相似文献   
6.
A new theory of eccentric accretion discs is presented. Starting from the basic fluid-dynamical equations in three dimensions, I derive the fundamental set of one-dimensional equations that describe how the mass, angular momentum and eccentricity vector of a thin disc evolve as a result of internal stresses and external forcing. The analysis is asymptotically exact in the limit of a thin disc, and allows for slowly varying eccentricities of arbitrary magnitude. The theory is worked out in detail for a Maxwellian viscoelastic model of the turbulent stress in an accretion disc. This generalizes the conventional alpha viscosity model to account for the non-zero relaxation time of the turbulence, and is physically motivated by a consideration of the nature of magnetohydrodynamic turbulence. It is confirmed that circular discs are typically viscously unstable to eccentric perturbations, as found by Lyubarskij, Postnov & Prokhorov, if the conventional alpha viscosity model is adopted. However, the instability can usually be suppressed by introducing a sufficient relaxation time and/or bulk viscosity. It is then shown that an initially uniformly eccentric disc does not retain its eccentricity as had been suggested by previous analyses. The evolutionary equations should be useful in many applications, including understanding the origin of planetary eccentricities and testing theories of quasi-periodic oscillations in X-ray binaries.  相似文献   
7.
8.
The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not take into account the vertical structure of the disc.
In this paper I construct a detailed semi-analytical model of the non-linear tidal distortion of a thin, three-dimensional accretion disc by a binary companion on a circular orbit. The analysis presented here allows for vertical motion and radiative energy transport, and introduces a simple model for the turbulent magnetic stress. The   m =2  inner vertical resonance has an important influence on the amplitude and phase of the tidal distortion. I show that the observed patterns find a natural explanation if the emission is associated with the tidally thickened sectors of the outer disc, which may be irradiated from the centre. According to this hypothesis, it may be possible to constrain the physical parameters of the disc through future observations.  相似文献   
9.
We study the radiation-driven warping of accretion discs in the context of X-ray binaries. The latest evolutionary equations are adopted, which extend the classical alpha theory to time-dependent thin discs with non-linear warps. We also develop accurate, analytical expressions for the tidal torque and the radiation torque, including self-shadowing.
We investigate the possible non-linear dynamics of the system within the framework of bifurcation theory. First, we re-examine the stability of an initially flat disc to the Pringle instability. Then we compute directly the branches of non-linear solutions representing steadily precessing discs. Finally, we determine the stability of the non-linear solutions. Each problem involves only ordinary differential equations, allowing a rapid, accurate and well-resolved solution.
We find that radiation-driven warping is probably not a common occurrence in low-mass X-ray binaries. We also find that stable, steadily precessing discs exist for a narrow range of parameters close to the stability limit. This could explain why so few systems show clear, repeatable 'superorbital' variations. The best examples of such systems, Her X-1, SS 433 and LMC X-4, all lie close to the stability limit for a reasonable choice of parameters. Systems far from the stability limit, including Cyg X-2, Cen X-3 and SMC X-1, probably experience quasi-periodic or chaotic variability as first noticed recently by Wijers and Pringle. We show that radiation-driven warping provides a coherent and persuasive framework but that it does not provide a generic explanation for the long-term variabilities in all X-ray binaries.  相似文献   
10.
We have applied an eccentric accretion disc theory in simplified form to the case of an accretion disc in a binary system, where the disc contains the 3:1 Lindblad resonance. This is relevant to the case of superhumps in SU Ursae Majoris cataclysmic variables and other systems, where it is thought that this resonance leads to growth of eccentricity and a modulation in the light curve due to the interaction of a precessing eccentric disc with tidal stresses. A single differential equation is formulated which describes the propagation, resonant excitation and viscous damping of eccentricity. The theory is first worked out in the simple case of a narrow ring and leads to the conclusion that the eccentricity distribution is locally suppressed by the presence of the resonance, creating a dip in the eccentricity at the resonant radius. Application of this theory to the superhump case confirms this conclusion and produces a more accurate expression for the precession rate of the disc than has been previously accomplished with simple dynamical estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号