首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
地质学   1篇
天文学   8篇
  2018年   4篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  1995年   2篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
The BATSE and OSSE instrument teams have modified flight software to promptly (within 2 min of trigger) slew the OSSE detectors to burst locations determined on-board by BATSE. This enables OSSE to make sensitive searches for prompt and delayed post-burst line and continuum emission above 50 keV. In the best cases our sensitivity will be more than an order of magnitude better than any other search in this energy range. We expect to slew to 1–2 bursts per month, based on the OSSE FOV and BATSE event rate. Detections or limits from continued operation of this system may provide significant constraints on burst models. As an example of the observations made using this system, we present preliminary limits for post-burst emission from GRB 950223 on several time scales.  相似文献   
2.
The existence of either pre- or post-burst emission can provide substantial new information about the burst source and its local environment. We have data from serveral events serendipitously in or near the OSSE field of view at the time of the burst. We present pre- and post-burst flux limits from one such event, GRB 940301. The OSSE data for other periods when scheduled observations have included burst locations will enable us to search for pre- and post- burst emission on many time scales.  相似文献   
3.
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study.  相似文献   
4.
The Cassini imaging science subsystem (ISS) acquired 449 high-resolution images (<800 m/pixel) during one close flyby of Dione in 2005 and three non-targeted flybys in 2004, 2006, and 2007. We combined these images with lower-resolution Cassini images and one other taken by Voyager cameras to produce a high-resolution semi-controlled mosaic of Dione. This global mosaic is the baseline for a high-resolution Dione atlas that consists of 15 tiles mapped at a scale of 1:1,000,000. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The whole atlas is available to the public through the Imaging Team's website [http://ciclops.org/maps].  相似文献   
5.
Ceres’ surface has commonly been linked with carbonaceous chondrites (CCs) by ground‐based telescopic observations, because of its low albedo, flat to red‐sloped spectra in the visible and near‐infrared (VIS/NIR) wavelength region, and the absence of distinct absorption bands, though no currently known meteorites provide complete spectral matches to Ceres. Spatially resolved data of the Dawn Framing Camera (FC) reveal a generally dark surface covered with bright spots exhibiting reflectance values several times higher than Ceres’ background. In this work, we investigated FC data from High Altitude Mapping Orbit (HAMO) and Ceres eXtended Juling (CXJ) orbit (~140 m/pixel) for global spectral variations. We found that the cerean surface mainly differs by spectral slope over the whole FC wavelength region (0.4–1.0 μm). Areas exhibiting slopes ?1 constitute only ~3% of the cerean surface and mainly occur in the bright material in and around young craters, whereas slopes ≥?10% μm?1 occur on more than 90% of the cerean surface; the latter being denoted as Ceres’ background material in this work. FC and Visible and Infrared Spectrometer (VIR) spectra of this background material were compared to the suite of CCs spectrally investigated so far regarding their VIS/NIR region and 2.7 μm absorption, as well as their reflectance at 0.653 μm. This resulted in a good match to heated CI Ivuna (heated to 200–300 °C) and a better match for CM1 meteorites, especially Moapa Valley. This possibly indicates that the alteration of CM2 to CM1 took place on Ceres.  相似文献   
6.
The Visual Infrared Mapping Spectrometer (VIMS) onboard the CASSINI spacecraft obtained new spectral data of the icy satellites of Saturn after its arrival at Saturn in June 2004. VIMS operates in a spectral range from 0.35 to 5.2 μm, generating image cubes in which each pixel represents a spectrum consisting of 352 contiguous wavebands.As an imaging spectrometer VIMS combines the characteristics of both a spectrometer and an imaging instrument. This makes it possible to analyze the spectrum of each pixel separately and to map the spectral characteristics spatially, which is important to study the relationships between spectral information and geological and geomorphologic surface features.The spatial analysis of the spectral data requires the determination of the exact geographic position of each pixel on the specific surface and that all 352 spectral elements of each pixel show the same region of the target. We developed a method to reproject each pixel geometrically and to convert the spectral data into map projected image cubes. This method can also be applied to mosaic different VIMS observations. Based on these mosaics, maps of the spectral properties for each Saturnian satellite can be derived and attributed to geographic positions as well as to geological and geomorphologic surface features. These map-projected mosaics are the basis for all further investigations.  相似文献   
7.
Impact crater Dantu not only exhibits a very complex geological history but also shows an exceptional heterogeneity of its surface composition. Because of its location within a low‐lying region named Vendimia Planitia, which has been proposed to represent an ancient impact basin, Dantu possibly offers a window into the composition of Ceres’s deeper crust, which apparently is enriched in ammonia. Local concentration of carbonates within Dantu or its ejecta blanket may be either exposed or their emplacement induced by the Dantu impact event. Because carbonates can be seen along Dantu's crater walls, exposed due to recent slumping, but also as fresh spots or clusters of spots scattered across the surface, the deposition/formation of carbonates took place over a long time period. The association of several bright spots enriched in carbonates with sets of fractures on Dantu's floor might be accidental. Nevertheless, its morphological and compositional similarity to the faculae in Ceres’s prominent impact crater Occator including its hydrated state does not exclude a cryo‐volcanic origin, i.e., upwelling of carbonate‐enriched brines influenced by H2O ice in the subsurface. Indeed, an isolated H2O ice spot can be identified near Dantu, which shows that ice still exists in Ceres’s subsurface at midlatitudes and that it can exist on the surface for a longer period of time.  相似文献   
8.
Structural and topological information play a key role in modeling flow and transport through fractured rock in the subsurface. Discrete fracture network (DFN) computational suites such as dfnWorks (Hyman et al. Comput. Geosci. 84, 10–19 2015) are designed to simulate flow and transport in such porous media. Flow and transport calculations reveal that a small backbone of fractures exists, where most flow and transport occurs. Restricting the flowing fracture network to this backbone provides a significant reduction in the network’s effective size. However, the particle-tracking simulations needed to determine this reduction are computationally intensive. Such methods may be impractical for large systems or for robust uncertainty quantification of fracture networks, where thousands of forward simulations are needed to bound system behavior. In this paper, we develop an alternative network reduction approach to characterizing transport in DFNs, by combining graph theoretical and machine learning methods. We consider a graph representation where nodes signify fractures and edges denote their intersections. Using random forest and support vector machines, we rapidly identify a subnetwork that captures the flow patterns of the full DFN, based primarily on node centrality features in the graph. Our supervised learning techniques train on particle-tracking backbone paths found by dfnWorks, but run in negligible time compared to those simulations. We find that our predictions can reduce the network to approximately 20% of its original size, while still generating breakthrough curves consistent with those of the original network.  相似文献   
9.
The geologic context of red organic‐rich materials (ROR) found across an elongated 200 km region on Ceres is evaluated with spectral information from the multispectral framing camera (FC) and the visible and near‐infrared mapping spectrometer (VIR) of Dawn. Discrete areas of ROR materials are found to be associated with small fresh craters less than a few hundred meters in diameter. Regions with the highest concentration of discrete ROR areas exhibit a weaker diffuse background of ROR materials. The observed pattern could be consistent with a field of secondary impacts, but no appropriate primary crater has been found. Both endogenic and exogenic sources are being considered for these distinctive organic materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号