首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   1篇
海洋学   1篇
天文学   42篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
3.
We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219–0005465 (GSC  02265–00107 = WASP–1  ) and USNO-B1.0 0964–0543604 (GSC  00522–01199 = WASP–2  ). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radial-velocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80–0.98 and 0.81–0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 R Jup, whereas WASP-2b has a radius in the range 0.65–1.26 R Jup.  相似文献   
4.
5.
The results of 27 h of time series photometry of SDSS 121209.31+013627.7 are presented. The binary period established from spectroscopy is confirmed and refined to 0.061 412 d (88.43 min). The photometric variations are dominated by a brightening of about 16 mmag, lasting a little less than half a binary cycle. The amplitude is approximately the same in V ,  R and white light. A secondary small brightness increase during each cycle may also be present. We speculate that SDSS 121209.31+013627.7 may be a polar in a low state.  相似文献   
6.
Swift -detected GRB 080307 showed an unusual smooth rise in its X-ray light curve around 100 s after the burst, at the start of which the emission briefly softened. This 'hump' has a longer duration than is normal for a flare at early times and does not demonstrate a typical flare profile. Using a two-component power-law-to-exponential model, the rising emission can be modelled as the onset of the afterglow, something which is very rarely seen in Swift -X-ray light curves. We cannot, however, rule out that the hump is a particularly slow early-time flare, or that it is caused by upscattered reverse shock electrons.  相似文献   
7.
We have used the radial velocity variations of two sdB stars previously reported to be binaries to establish their orbital periods. They are PG 0940+068 ( P =8.33 d) and PG 1247+554 ( P =0.599 d). The minimum masses of the unseen companions, assuming a mass of 0.5 M for the sdB stars, are 0.090±0.003 M. for PG 1247+554 and 0.63±0.02 M for PG 0940+068. The nature of the companions is not constrained further by our data.  相似文献   
8.
9.
The HYPER-MUCHFUSS project targets a population of high velocity subluminous B stars to discover either close binaries with massive unseen companions or hyper-velocity stars. Our starting point is the enormous database of SDSS. We preselected sdO/B candidates by colour and classified them by visual inspection of their spectra. We measured the radial velocity from the coadded SDSS spectra, which serves as first epoch measurement. Stars with high Galactic rest-frame velocities were selected and second epoch observations were obtained starting in 2007 at several sites. For the brighter targets we also included the SDSS individual spectra as additional information. In the course of our survey we observed 88 out of 265 stars from our target list. We discovered 39 HVS candidates as well as 49 close binaries. In addition we analysed all single spectra of sdBs from SDSS and found 120 close binaries. For the targets with constant RVs we performed a proper motion analysis with the highest possible accuracy from the available digitised photographic plates. Together with the analysed spectra and the calculation of the spectroscopic distance, we calculated complete trajectories and deduced the origins of these stars. Targets with high RV variability on short timescales were selected for follow-up. Numerical simulations based on the period and companion mass distribution of the known sdB binary sample were carried out to optimise the target selection and single out candidate binaries with massive companions. The follow-up campaign using WHT/ISIS and CAHA-3.5m/TWIN started in 2009.  相似文献   
10.
The HYPER-MUCHFUSS (HYPER-velocity stars or Massive Unseen Companions of Hot Faint Underluminous Stars from SDSS) project targets a population of high-velocity subluminous B stars to discover either close binaries with massive unseen companions or hyper-velocity stars. We re-observed high-velocity subdwarf selected candidates from the SDSS spectroscopic Data Release 6. Starting in 2007 we used several instruments and have now reached a completion level of 33% (from 265 targets), whereas we found at least 16 close binaries. Here we present results for two of our 39 hyper-velocity star candidates. From the available Digitized Sky Surveys photographic plates we measured a significant proper motion for 14 stars. Combining this information with a detailed spectroscopic analysis allows for the first time a complete determination of the 3D-trajectories for a high-velocity sample. We present our preliminary results for the two subdwarfs J1644+4523 and J1211+1437. Assuming the Standard Allen and Santillan (Rev. Mex. Astron. Astrofis. 22:255, 1991) potential the first one is bound and originates in the central region of the Galaxy. The subdwarf B star J1211+1437 is possibly unbound and seems to originate in the Galactic rim. We also performed numerical kinematical experiments with increased dark matter halo mass. and found that the origin of J1644+4523 in the central region is not changed but the time-of-flight is drastically shortened. J1211+1437 would be bound and probably belongs to population II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号