首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   3篇
天文学   5篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The height of the lower red border of type-B aurora has been determined by triangulation using TV cameras at two ground stations. A mean height of 91.4 ± 1.1 km was determined from a set of 12 measurements made under ideal conditions. A TV spectrograph was used simultaneously to seek possible spectral changes between 6400 and 6900 Å which would be indicative of changes in the vibrational distribution in the N2 First Positive bands. No significant difference was found in this distribution between the spectra from 93 and 122 km. The height distribution of contributions to the OI 5577 Å emission relative to the N+2 First Negative emission was modelled from 80 to 160 km. Contributions from electron impact on atomic O, O+2 dissociative recombination and N2(A)O energy transfer were included. Account was taken of recent laboratory data on O(1S) quenching. It was concluded that these processes could explain the excitation of O(1S) in normal aurora and the height distribution of OI 5577 Å in type-B red aurora. It was confirmed that the lifetime ofO(1S) in type-B red auroral rapid time variations is about 0.5 s and it was found from the model that the observed time variation can be reproduced by the mechanisms considered, provided the concentration of NO in the auroral atmosphere is about 1 × 109 at 95 km. Before reasonable certainty can be attained in the correctness of the interpretation it will however be necessary to have reliable simultaneous observations of neutral atmospheric composition particularly for O and NO as well as unchallengeable measurements of the yields of O(1S) for the processes considered and for several other processes which have been suggested recently.  相似文献   
2.
A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of (3914 Å), (5577 Å), (7620 Å) and (N2VK). In particular, the roles played by energy transfer from N2(A3+u) and by other processes in the excitation of O(1S) and O2(b1+g) were investigated in detail. It is concluded that the N2(A3+u) mechanism is dominant for the production of OI(5577 Å) in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.  相似文献   
3.
An auroral electron excitation model, combined with simple equilibrium neutral and ion chemistry models, is used to investigate the optical emission processes and height profiles of I(5577 Å) and I(7620 Å) in the 90 to 100 km altitude region. It is shown that the apparent discrepancies between ground-based and rocket-borne auroral observations of the I(7620 Å)/I(5577 Å) ratio are due to the extreme height variation of this intensity ratio in the 90 to 100 km region.  相似文献   
4.
Night-time variations of the OH nightglow intensity reported by Wiens and Weill are compared with the theoretical predictions of a number of models. The behaviour of this emission agrees better with the theoretical one for locations in the equatorial zone but becomes more variable and less predictable for mid-latitude stations. It is calculated that, as a result of an increase of the eddy diffusion coefficient K, the OH emission can deviate from the typical night-time variation and increase by a factor as high as 2 if K is multiplied by 10. It is suggested that the eddy diffusion coefficient in the upper atmosphere is lower and undergoes lower amplitude variations in the equatorial zone than in the mid-latitude regions.  相似文献   
5.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   
6.
Synthetic spectral band profiles of the O2+ 1NG system are presented for use in the analysis of auroral observations. Observed profiles are used to check the accuracy of the simulation.  相似文献   
7.
Observations of type-B red and normal aurora were made with a high-speed multichannel photometer and a digital grating spectrometer. The ratio I(O2+ 1N; 2, 0 + 3, 1)I(N2+ 1N; 0, 3) measured in the 5200–5300 Å region with the spectrometer was found to increase by about 16% from normal to type-B aurora. This small change is difficult to reconcile with a height below 90 km for the red border. In the type-B aurora, λ 5577 was weakened by a factor between 1.9 and 3.8 while the ratio I(N2 1P; 5, 2)I(N2+ 1N) was enhanced less than 20%. Rapid intensity variations in the type-B lower border were observed in the λ 5577 and other channels of the photometer. A revised time dependent auroral excitation-ion chemistry model is used in an attempt to reproduce the observations. The observed weakening of λ 5577 could be produced at heights equal to or less than 100 km while the short observed time lag of λ 5577 on the N2+ 1N emission is easier to explain at 100 km than at 80 km. It is concluded that some type-B lower borders may occur near 100 km although it is recognized that there is good evidence rare deep crimson lower borders lie at 80 km or below. The mechanism for the excitation of O(1S) is considered in the light of these results. None of the mechanisms examined is satisfactory on the basis of currently accepted atmospheric models and quenching rate coefficients.  相似文献   
8.
The use of simple photographic cameras on early Shuttle missions allowed spacecraft glow to be clearly identified, and its potential for the contamination of weak atmospheric emissions to be estimated. Since those early flights the equipment has been extensively modified so that it is now possible to obtain images with a spectral resolution of 0.1 nm. The early Shuttle glow observations are reviewed and the use of spatially scanned filters to obtain spectral results is described. These glow measurements are discussed in terms of some current ideas for vehicle induced glows and it is suggested that the glow intensity may be controlled by the temperature of the glowing surface. An example of an atmospheric image obtained with the interference filter camera is presented and the limitations in the use of such images are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号