首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   3篇
地质学   10篇
天文学   7篇
自然地理   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2006年   1篇
  2004年   1篇
  2000年   2篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
We have re-examined the prospects of HOCl as an inert reservoir for atmospheric chlorine in the light of new theoretical calculations and available experimental measurements of its photodissociation cross-sections. The theoretical calculations and most recent laboratory studies imply that the broad maxima 3200 Å observed in two other experimental spectra may not belong to HOCl. On the basis of this implication HOCl could have a long lifetime against photodissociation in the stratosphere, and could, thereby, become a reservoir for atmospheric chlorine comparable to ClONO2 or even HCl. In this capacity HOCl could reduce the predicted ozone destruction due to any given level of total chlorine burden. We have also examined the difficulties in laboratory measurements of the HOCl absorption spectrum with particular emphasis on identifying the impurities which may be present in the experimental system. It appears that specialized new experiments are needed to clearly establish the nature and strength of HOCl absorption in the neighbourhood of 3200 Å. Some refinements in the theoretical calculations also seem desirable. In view of the difficulties involved in the laboratory determination of HOCl photodissociation cross-sections, it is suggested that a search for possible stratospheric HOCl by atmospheric spectroscopists would be worthwhile.  相似文献   
2.
A one-dimensional model of polar stratospheric cloud (PSC) formation and evolution during the polar winter, incorporating both HNO3 and H2O condensation, has been developed to investigate the interactions between Type I and Type II PSCs and the effects of these clouds on the stratospheric composition. Model simulations for various meteorological conditions and the results of extensive sensitivity tests are presented. Temperature oscillations, which have been included in the model, are shown to have an important influence on the characteristics and effects of the PSCs. The predicted proportions of the PSCs are consistent with observations of number, size, and optical effects, such as depolarization. Denitrification of stratospheric air by 35–88% is shown to occur in the presence of both Type I and Type II PSCs, with comparable nitrate removal in both types of clouds. Dehydration by Type II clouds simultaneously removes similar percentages of water vapour, up to 79% at lower altitudes. Altough dehydration is insensitive to most of the parameter variations except the minimum temperature, the process of denitrification, especially the proportion removed by Type I PSCs, is highly variable.  相似文献   
3.
We speculate on the origin and physical properties of haze in the upper atmosphere of Venus. It is argued that at least four distinct types of particles may be present. The densest and lowest haze, normally seen by spacecraft, probably consists of a submicron sulfuric acid aerosol which extends above the cloud tops (at ~70 km) up to ~80 km; this haze represents an extension of the upper cloud deck. Measurements of the temperature structure between 70 and 120 km indicate that two independent water ice layers may occasionally appear. The lower one can form between 80 and 100 km and is probably the detached haze layer seen in high-contrast limb photography. This ice layer is likely to be nucleated on sulfuric acid aerosols, and is analogous to the nacreous (stratospheric) clouds on Earth. At the Venus “mesopause” near 120 km, temperatures are frequently cold enough to allow ice nucleation on meteoric dust or ambient ions. The resulting haze (which is analogous to noctilucent clouds on Earth) is expected to be extremely tenous, and optically invisible. On both Earth and Venus, meteoric dust is present throughout the upper atmosphere and probably has similar properties.  相似文献   
4.
We have constructed a model of the physical processes controlling Titan's clouds. Our model produces clouds that qualitatively match the present observational constraints in a wide variety of model atmospheres, including those with low atmospheric pressures (25 mbar) and high atmospheric pressures. We find the following: (1) high atmospheric temperatures (160°K) are important so that there is a large scale height in the first few optical depths of cloud; (2) the aerosol mass production occurs at very low aerosol optical depth so that the cloud particles do not directly affect the photochemistry producing them; (3) the production rate of aerosol mass by chemical processes is probably greater than 3.5 × 10?14 g cm?2 sec?1; (4) and the eddy diffusion coefficient is less than 5 × 106 cm2 sec?1 except perhaps in the top optical depth of the cloud. Our model is not extremely sensitive to particle shape, but it is sensitive to particle density. Higher particle densities require larger aerosol mass production rates to produce satisfactory clouds. Particle densities of unity require a mass production rate on the order of 3.5 × 10?13 g cm?2 sec?1. We also show that an increase in mass input causes a decrease in the mean particle size, as required by J. B. Pollack et al. (1980, Geophys. Res. Lett. 7, 829–832), to explain the observed correlation between the solar cycle and Titan's albedo; that coagulation need not be extremely inefficient in order to obtain realistic clouds as proposed by M. Podolak and E. Podolak (1980, Icarus43, 73–83); that coagulation could be inefficient due to photoelectric charging of the particles; and, that the lifetime of particles near the altitude of unit optical depth is a few months, as required to explain the temporal variability observed by S. T. Suess and G. W. Lockwood and D. P. Cruikshank and J. S. Morgan (1979, Bull. Amer. Astron. Soc.11, 564). Although Titan's aerosols are ottically thick in the vertical direction, the atmosphere is so extended that the horizontal visibility is greater than that found anywhere at Earth's surface.  相似文献   
5.
6.
Angelo Turco 《GeoJournal》2004,60(4):329-337
Territorial symbolism in sub-Saharan Africa calls to mind multiple forms of knowledge. More particularly, territorial significance is fed both by magical and sacred beliefs and by knowledge based on empirical observation and concrete practices. These two types of knowledge differ widely as to their nature, the procedures by which they are formed, and the cultural values they embody. Nevertheless, semantic interaction between mythical knowledge and technical knowledge is remarkably rich. By blurring the distinction between mythos and techne, this semantic interaction seems to constitute an important cultural tool for building feelings of social security in that it reinforces and stabilizes socio-geographic patterns, and more especially those which regulate access to space and natural resources. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
The tectonic history of the Western Mediterranean region during the Oligocene and Early Miocene is illustrated through a series of plate reconstructions, from chron C13n to chron C6n. The reconstructions are based on a new interpretation of published magnetic anomaly data and two-ships seismic data, and their integration with known geological constraints, in order to determine style and timing of the backarc extension processes in the Liguro-Provençal, Valencia and Algerian basins. In particular, a reinterpretation of the regional magnetic anomaly field allowed the calculation of the instantaneous Euler poles associated with the motion of 11 microplates relative to Eurasia and Iberia. Furthermore, a quantitative analysis of the acoustic basement morphology and the balancing of deep crustal profiles were used to estimate the closure and pre-rift rotation angles associated with the Euler poles of opening of the Ligurian, Provençal, Valencia and Algerian basins. This rigorous reconstruction of the geometry of the pre-rift continental margins of Iberia and Eurasia could furnish important insights into the study of Mediterranean tectonics for older times.  相似文献   
8.
We analyse the observed climate-driven changes in summer wildfires and their future evolution in a typical Mediterranean environment (NE Spain). By analysing observed climate and fire data from 1970 to 2007, we estimate the response of fire number (NF) and burned area (BA) to climate trends, disentangling the drivers responsible for long-term and interannual changes by means of a parsimonious Multi Linear Regression model (MLR). In the last forty years, the observed NF trend was negative. Here we show that, if improvements in fire management were not taken into account, the warming climate forcing alone would have led to a positive trend in NF. On the other hand, for BA, higher fuel flammability is counterbalanced by the indirect climate effects on fuel structure (i.e. less favourable conditions for fine-fuel availability and fuel connectivity), leading to a slightly negative trend. Driving the fire model with A1B climate change scenarios based on a set of Regional Climate Models from the ENSEMBLES project indicates that increasing temperatures promote a positive trend in NF if no further improvements in fire management are introduced.  相似文献   
9.
The large backscattering cross section of the particles composing the upper clouds on Venus suggests that a small quantity of high refractive index material is present in the clouds. We propose that this material is elemental sulfur and that sulfur also accounts for the absorption of uv-visible radiation at wavelengths outside of the SO2 absorption bands. A physical-chemical model of the clouds shows that sulfur, with a mass comparable to that of the observed Mode 1 particles, can be produced in oxygen-poor regions of the upper clouds and in rising air columns. Sulfur production from SO2 can be rapid, which explains the observed correlation between SO2 and the uv absorber. The sulfur is properly located to be the uv absorber uv absorber since its calculated concentration rapidly increases with depth in the upper clouds, but it is largely absent in the middle and lower clouds. Sulfur nucleation provides a means of generating the observed bimodal particle size distribution in the upper clouds. Chemical modeling shows that the sulfur vapor is rich in short-chain allotropes such as S3 and S4. These allotropes have absorption bands centered near 4000 and 5300 Å, respectively. We suggest that the sulfur particles on Venus are largely composed of S8, but also contain a few percent of S3 and S4. Such particles could account for the wavelength dependence of the albedo of Venus and for the solar energy deposition profile in the clouds. These allotropes are metastable and relax to S8 over periods of hours to days, providing a simple explanation for the relatively short lifetime of the uv absorber.  相似文献   
10.
The formation, evolution and properties of noctilucent clouds are studied using a timedependent one-dimensional model of ice particles at mesospheric altitudes. The model treats ice crystals, meteoric dust, water vapor and air ionization as fully interactive cloud elements. For ice particles, the microphysical processes of nucleation, condensation, coagulation and sedimentation are included; the crystal habits of ice are also accounted for. Meteoric dust is analyzed in the manner of Hunten et al. (1980). The simulated particle sizes range from 10 Å to 2.6μm. The chemistry of water vapor and the charge balance of the mesosphere are also analyzed in detail.Based on model calculations, including numerous sensitivity tests, several conclusions are reached. Extremely cold mesopause temperatures (<140K) are necessary to form noctilucent clouds; such temperatures only exist at high latitudes in summer. A water vapor concentration of 4–5 ppmv is sufficient to form a visible cloud. However, a subvisible cloud can exist in the presence of only 1 ppmv of H2O. Ample cloud condensation nuclei are always present in the mesosphere; at very low temperatures, either meteoric dust or hydrated ions can act as cloud nuclei. To be effective, meteoric dust particles must be larger than 10–15 Å in radius. When dust is present, water vapor supersaturations may be held to such low values that ion nucleation is not possible. Ion nucleation can occur, however, in the absence of dust or at extremely low temperatures (<130K). While dust nucleation leads to a small number (<10cm?3) of large ice particles (>0.05 μm radius) and cloud optical depths (at 550 nm) ~10?4, ion nucleation generally leads to a large number (~103cm?3) of smaller particles and optical depths ~10?5). However, because calculated nucleation rates in noctilucent clouds are highly uncertain, the predominant nucleus for the clouds (i.e., dust or ions) cannot be unambiguously established. Noctilucent clouds require several hours-up to a day-to materialize. Once formed, they may persist for several days, depending on local meteorological conditions. However, the clouds can disappear suddenly if the air warms by 10–20 K. The environmental conditions which exist at the high-latitude summer mesopause, together with the microphysics of small ice crystals, dictate that particle sizes will be ? 0.1 μm radius. The ice crystals are probably cubic in structure. It is demonstrated that particles of this size and shape can explain the manifestations of noctilucent clouds. Denser clouds are favored by higher water vapor concentrations, more rapid vertical diffusion and persistent upward convection (which can occur at the summer pole). Noctilucent clouds may also condense in the cold “troughs” of gravity wave trains. Such clouds are bright when the particles remain in the troughs for several hours or more; otherwise they are weak or subvisible.Model simulations are compared with a wide variety of noctilucent cloud data. It is shown that the present physical model is consistent with most of the measurements, as well as many previous theoretical results. Ambient noctilucent clouds are found to have a negligible influence on the climate of Earth. Anthropogenic perturbations of the clouds that are forecast for the next few decades are also shown to have insignificant climatological implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号