首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2002年   3篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 664 毫秒
1
1.
We report on the reduction and analysis of UVpolarimetric images of CI (λ1657 Å) and dust continuum (2696 Å emissions from C/1995 O1 (Hale-Bopp) taken using the Wide Field Imaging Survey Polarimeter (WISP) sounding rocket on 8 April, 1997. These observations represent the first imaging polarimetry of comets in the UV, and were performed in consort with ground based measurements of gas and dust polarization and distribution. The continuum results show 9% polarization across the image field with a polarization phase angle close to the 129° prediction. Comparison with ground based data implies minimal color dependence for Hale-Bopp in either the degree of polarization and in the position angle. The carbon polarimetry implies that most production occurs in the dense inner coma, and that it leaves that area in thermodynamic equilibrium. Its radial profile further constrains the carbon outflow speed to be sufficient to travel ≥5 × 106 km without photoionization.  相似文献   
2.
The comae of very active comets have a substantiallymore complex coma than their weaker cousins.The primary cause of this is photolytic heating and collisionsthat occur over an ever-larger volume of the coma asQH 2O increases. Collisionswith the photochemical daughters ofwater in this regionmodify the radial distributions and outflowvelocity of each species, excite and quench metastableemissions, and introduce velocity gradients from photolyticheating. Comet Hale–Bopp was the first comet forwhich the collisional coma was both spatially resolvableand comparable in extent to the scale lengths ofmajor coma species. In the case of this object,the classical assumptions that make it possible toinvert radial emission line profiles, brightnesses, andlineshapes to production rate and velocity eitherdo not hold or require adjustment to work.Here we describe how a large collision zone modifies thecoma, how it affects the classical methods for obtainingproduction rate and velocity, and discuss how wide fieldimaging may be combined with modified versions ofsimple models to address the complications and extract somestructural information.  相似文献   
3.
We present hydrogen Balmer-α spectra of comet C/1995 O1(Hale–Bopp) recorded on 5 nights from 1997 February 1 to April 19 by ahigh-resolution (Δ v = 5 km s-1) Fabry–Pérot spectrometer for a4'.1 (∼2.7 × 105 km) FOV centered 5' sunwardof the nucleus. The Hα line profile is an important diagnostic ofphotolytic heating in cometary atmospheres. Extraction of the spectrafrom the Fabry–Pérot ring images was complicated by obscuration of the telescope FOV due to Hale–Bopp's low elevation, but the measuredH-α line widths of 11–13 km s-1 (FWHM) are insensitive to the spectral extraction technique. The line widths are consistent withestimates derived from a successful model of Hale–Bopp's hydrogenLyman-α coma assuming the inner coma is opaque to Hα. Wediscuss methods for improving the spectral extraction technique andderiving a precise instrument profile which will allow the detailedshape of the line profile to constrain coma models.  相似文献   
4.
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号