首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2007年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
The proposed baseline GAIA mission will be able to detect the astrometric signature of Jupiter-size planets around of the order of a million stars, using either global or narrow-angle astrometry. If the mission can realize the higher astrometric accuracy that photon statistics allows for bright stars, lower-mass planets (from Earth size to ten times larger) can be found around ten to a few hundred stars.  相似文献   
2.
Sozzetti  A.  Spagna  A.  Lattanzi  M.G. 《Earth, Moon, and Planets》1998,81(1):103-104
We present a selection of results obtained with detailed simulations reproducing the process of data acquisition and analysis for the global astrometry satellite GAIA, a space mission concept currently under study by ESA as part of Horizon 2000 Plus program.Limits on distance for pure detection and significant orbital parameters estimation of Jupiter-mass and Jupiter-like planets around solar-type stars in the neighborhood of our sun are derived.  相似文献   
3.
4.
The proposed global astrometry mission GAIA , recently recommended within the context of ESA's Horizon 2000 Plus long-term scientific programme, appears capable of surveying the solar neighbourhood within ∼200 pc for the astrometric signatures of planets around stars down to the magnitude limit of V =17 mag, which includes late M dwarfs at 100 pc.
Realistic end-to-end simulations of the GAIA global astrometric measurements have yielded the first quantitative estimates of the sensitivity to planetary perturbations and of the ability to measure their orbital parameters. Single Jupiter-mass planets around normal solar-type stars appear detectable out to 150 pc ( V ≤12 mag) with probabilities ≥50 per cent for orbital periods between ∼2.5 and ∼8 yr, and their orbital parameters are measurable with better than 30 per cent accuracy to about 100 pc. Jupiter-like objects (same mass and period as our giant planet) are found with similar probabilities out to 100 pc.
These first experiments indicate that the GAIA results would constitute an important addition to those that will come from the other ongoing and planned planet-search programmes. These data combined would provide a formidable testing ground on which to confront theories of planetary formation and evolution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号