首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
海洋学   1篇
天文学   9篇
  2017年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
The Alice ultraviolet spectrograph onboard the New Horizons spacecraft observed two occultations of the bright star χ Ophiucus by Jupiter’s atmosphere on February 22 and 23, 2007 during the approach phase of the Jupiter flyby. The ingress occultation probed the atmosphere at 32°N latitude near the dawn terminator, while egress probed 18°N latitude near the dusk terminator. A detailed analysis of both the ingress and egress occultations, including the effects of molecular hydrogen, methane, acetylene, ethylene, and ethane absorptions in the far ultraviolet (FUV), constrains the eddy diffusion coefficient at the homopause level to be  cm2 s−1, consistent with Voyager measurements and other analyses (Festou, M.C., Atreya, S.K., Donahue, T.M., Sandel, B.R., Shemansky, D.E., Broadfoot, A.L. [1981]. J. Geophys. Res. 86, 5717-5725; Vervack Jr., R.J., Sandel, B.R., Gladstone, G.R., McConnell, J.C., Parkinson, C.D. [1995]. Icarus 114, 163-173; Yelle, R.V., Young, L.A., Vervack Jr., R.J., Young, R., Pfister, L., Sandel, B.R. [1996]. J. Geophys. Res. 101 (E1), 2149-2162). However, the actual derived pressure level of the methane homopause for both occultations differs from that derived by [Festou et al., 1981] and [Yelle et al., 1996] from the Voyager ultraviolet occultations, suggesting possible changes in the strength of atmospheric mixing with time. We find that at 32°N latitude, the methane concentration is  cm−3 at 70,397 km, the methane concentration is  cm−3 at 70,383 km, the acetylene concentration is  cm−3 at 70,364 km, and the ethane concentration is  cm−3 at 70,360 km. At 18°N latitude, the methane concentration is  cm−3 at 71,345 km, the methane concentration is  cm−3 at 71,332 km, the acetylene concentration is cm−3 at 71,318 km, and the ethane concentration is  cm−3 at 71,315 km. We also find that the H2 occultation light curve is best reproduced if the atmosphere remains cold in the microbar region such that the base of the thermosphere is located at a lower pressure level than that determined by in situ instruments aboard the Galileo probe (Seiff, A., Kirk, D.B., Knight, T.C.D., Young, R.E., Mihalov, J.D., Young, L.A., Milos, F.S., Schubert, G., Blanchard, R.C., Atkinson, D. [1998]. J. Geophys. Res. 103 (E10), 22857-22889) - the Sieff et al. temperature profile leads to too much absorption from H2 at high altitudes. However, this result is highly model dependent and non-unique. The observations and analysis help constrain photochemical models of Jupiter’s atmosphere.  相似文献   
2.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   
3.
We report the first detection of propane, C3H8, in Saturn's stratosphere. Observations taken on September 8, 2002 UT at NASA's IRTF using TEXES, show multiple emission lines due to the 748 cm−1ν21 band of C3H8. Using a line-by-line radiative transfer code, we are able to fit the data by scaling the propane vertical mixing ratio profile from the photochemical model of Moses et al. [2000. Icarus 143, 244-298]. Multiplicative factors of 0.7 and 0.65 are required to fit the −20° and −80° planetocentric latitude spectra. The resultant profiles are characterized by a 5 mbar mixing ratio of 2.7±0.8×10−8 at −20° and at −80° latitude. These results suggest that the time scale for meridional circulation lies between the net photochemical lifetimes of C2H2 and C3H8, ≈30-600 years.  相似文献   
4.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   
5.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   
6.
The penaeid prawns Fenneropenaeus indicus and Metapenaeus monoceros support shallow-water prawn fisheries in the south-west Indian Ocean. They are sympatric and have similar life histories, including developmental stages that depend on estuarine and marine habitats and a short dispersal duration. Nevertheless, M. monoceros juveniles display a more generalist habitat preference in estuaries and recruit to offshore habitats during a different season than F. indicus. We hypothesised that these differences would affect dispersal patterns, leading to dissimilar geographic genetic structure between the two taxa. Given their short dispersal phase, we also hypothesised that the Mozambique Channel would form a barrier to dispersal between the southeastern African mainland and Madagascar sites. Population differentiation was assessed based on analysis of mitochondrial DNA control-region sequences. Both species displayed high haplotype and low nucleotide diversity. Pairwise ?ST statistics supported the existence of admixed populations along the African mainland sites for both species, with geographic distance isolating populations at the extremes of the sampled range (Kenya and east coast of South Africa). The Madagascar population differed significantly from African mainland populations. The concordant patterns in population differentiation suggest that F. indicus and M. monoceros can be considered as single African stocks, or fisheries management units.  相似文献   
7.
We have observed about 16 absorption lines of the ν2 SO2 vibrational band on Io, in disk-integrated 19-μm spectra taken with the TEXES high spectral resolution mid-infrared spectrograph at the NASA Infrared Telescope Facility in November 2001, December 2002, and January 2004. These are the first ground-based infrared observations of Io's sunlit atmosphere, and provide a new window on the atmosphere that allows better longitudinal and temporal monitoring than previous techniques. Dramatic variations in band strength with longitude are seen that are stable over at least a 2 year period. The depth of the strongest feature, a blend of lines centered at 530.42 cm−1, varies from about 7% near longitude 180° to about 1% near longitude 315° W, as measured at a spectral resolution of 57,000. Interpretation of the spectra requires modeling of surface temperatures and atmospheric density across Io's disk, and the variation in non-LTE ν2 vibrational temperature with altitude, and depends on the assumed atmospheric and surface temperature structure. About half of Io's 19-μm radiation comes from the Sun-heated surface, and half from volcanic hot spots with temperatures primarily between 150 and 200 K, which occupy about 8% of the surface. The observations are thus weighted towards the atmosphere over these low-temperature hot spots. If we assume that the atmosphere over the hot spots is representative of the atmosphere elsewhere, and that the atmospheric density is a function of latitude, the most plausible interpretation of the data is that the equatorial atmospheric column density varies from about 1.5×1017 cm−2 near longitude 180° W to about 1.5×1016 cm−2 near longitude 300° W, roughly consistent with HST UV spectroscopy and Lyman-α imaging. The inferred atmospheric kinetic temperature is less than about 150 K, at least on the anti-Jupiter hemisphere where the bands are strongest, somewhat colder than inferred from HST UV spectroscopy and millimeter-wavelength spectroscopy. This longitudinal variability in atmospheric density correlates with the longitudinal variability in the abundance of optically thick, near-UV bright SO2 frost. However it is not clear whether the correlation results from volcanic control (regions of large frost abundance result from greater condensation of atmospheric gases supported by more vigorous volcanic activity in these regions) or sublimation control (regions of large frost abundance produce a more extensive atmosphere due to more extensive sublimation). Comparison of data taken in 2001, 2002, and 2004 shows that with the possible exception of longitudes near 180° W between 2001 and 2002, Io's atmospheric density does not appear to decrease as Io recedes from the Sun, as would be expected if the atmosphere were supported by the sublimation of surface frost, suggesting that the atmosphere is dominantly supported by direct volcanic supply rather than by frost sublimation. However, other evidence such as the smooth variation in atmospheric abundance with latitude, and atmospheric changes during eclipse, suggest that sublimation support is more important than volcanic support, leaving the question of the dominant atmospheric support mechanism still unresolved.  相似文献   
8.
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values.  相似文献   
9.
10.
Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement.We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号