首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
地球物理   23篇
地质学   9篇
天文学   31篇
  2022年   2篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
We discuss long-time changes of polar activity of the Sun using the new observational data sets in the optical range during 1872–2001. A study of the secular and cycle variations of the magnetic activity at the high-latitude regions is the main goal that includes polar magnetic field reversals during 1872–2001 and secular changes of the duration of polar activity cycles. The secular increase of the area of polar zones during the minimum activity in the last 120 years and as consequence a decrease of coronal temperature of the Sun in the high-latitude zones during the last 50 years. Correlation between the polar cycles of Caii-K bright points with the Wolf sunspot numbers cycles, W(t), and the 22-year polar magnetic cycles of Caii-K bright points at the high latitudes during 1905–1995 is discussed.  相似文献   
2.
A new series of yearly-mean relative sunspot numbers SN 2 that has been extrapolated into the past (to 1610) is presented. The Kislovodsk series with the scale factor b = 1.0094 ± 0.0059 represents a reasonable continuation of the mean-monthly and mean-yearly total sunspot areas of the Greenwich series after 1976. The second maximum of the 24th solar-activity cycle was not anomalously low, and was no lower than 6 of the past 13 cycles. A series A 2 of values for the total sunspot area in 1610–2015 has been constructed, and is complementary to new versions of the series of the relative number of sunspots SN 2 and the number of sunspot groups GN 2. When needed, this series can be reduced to yield a quantity having a clear physical meaning—the spot absolute magnetic flux Φ Σ(t)[Mx] = 2.16 × 1019 A(t) [mvh]. The maximum sunspot area during the Maunder minimum is much higher in the new series compared to the previous version. This at least partially supports the validity of arguments that cast doubt on the anomalously low ampltude of the solar cycles during the Maunder minimum that has been assumed by many researchers earlier.  相似文献   
3.
The latitudes of the zonal boundaries of the global magnetic field of the Sun are determined from the magnetic neutral lines on synoptic Hα maps obtained during 1878–1999. The area of the polar zone occupied by magnetic field of a single polarity at solar minima has doubled over the last 120 years. This provides an explanation for the secular increase in heliospheric characteristics, which differs from the two-fold increase of the magnetic field strength predicted for this period. The temporal variations of the magnetic flux from the polar regions and their role in global changes of the Earth’s climate are discussed in connection with secular variations in the structure of the internal magnetic field of the Sun.  相似文献   
4.
Makarov  V.I.  Tlatov  A.G.  Callebaut  D.K.  Obridko  V.N. 《Solar physics》2002,206(2):383-399
Lockwood, Stamper, and Wild (1999) argued that the average strength of the magnetic field of the Sun has doubled in the last 100 years. They used an analysis of the geomagnetic index aa. We calculated the area of polar zones of the Sun, A pz, occupied by unipolar magnetic field on H synoptic magnetic charts, following Makarov (1994), from 1878 to 2000. We found a gradual decrease of the annual minimum latitude of the high-latitude zone boundaries, 2m, of the global magnetic field of the Sun at the minimum of activity from 53° in 1878 down to 38° in 1996, yielding an average decrease of 1.2° per cycle. Consequently the area of polar zones A pz of the Sun, occupied by unipolar magnetic field at the minimum activity, has risen by a factor of 2 during 1878–1996. This means that the behavior of the index aa and consequently the magnetic flux from the Sun may be explained by an increase of the area of polar caps with roughly the same value of the magnetic field in this period. The area of the unipolar magnetic field at the poles (A pz) may be used as a new index of magnetic activity of the Sun. We compared A pz with the aa, the Wolf number W and A* -index (Makarov and Tlatov, 2000). Correlations based on `11-year' averages are discussed. A temperature difference of about 1° between the Maunder Minimum and the present time was deduced. We have found that the highest latitude of the polar zone boundaries of the large-scale magnetic field during very low solar activity reaches about 60°, cf., the Maunder Minimum. It is supposed that the 2m-latitude coincides with the latitude where r=0, with (r,) being the angular frequency of the solar rotation. The causes of the waxing and waning of the Sun's activity in conditions like Maunder Minimum are discussed.  相似文献   
5.
6.
We present identifications of coronal holes (CHs) from observations in the He?i 10?830 Å line made at Kitt Peak Observatory (from 1975 to 2003) and in the EUV 195 Å wavelength with SOHO/EIT (from 1996 to 2012). To determine whether a feature is a CH we have developed semi-automatic techniques for delineating CH borders on synoptic charts and for subsequent mapping of these borders on magnetic-field charts. Using these techniques, we superimposed CH borders on magnetic-field charts over the time interval from 1975 to 2012. A major contribution to the total area was made by high-latitude CHs, but in the declining phase of solar cycle 23, the contribution from low-latitude CHs increased substantially. Variations in the flux of Galactic cosmic rays and those in the inclination angle of the heliospheric current sheet followed the cyclic variations of CH areas. High-latitude CHs affect the properties of the solar wind in the ecliptic plane.  相似文献   
7.
8.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   
9.
Presented paper describes the basic principles and features of the implementation of a robotic network of optical telescopes MASTER, designed to study the prompt (simultaneous with gamma radiation) optical emission of gamma-ray bursts and to perform the sky survey to detect unknown objects and transient phenomena. With joint efforts of Sternberg astronomical institute, High altitude astronomical station of the Pulkovo observatory, Ural state university, Irkutsk state university, Blagoveshchensk pedagogical university, the robotic telescopes MASTER?II near Kislovodsk, Yekaterinburg, Irkutsk and Blagoveshchensk were installed and tested. The network spread over the longitudes is greater than 6?h. A further expansion of the network is considered.  相似文献   
10.
Kitchatinov  L.L.  Pipin  V.V.  Makarov  V.I.  Tlatov  A.G. 《Solar physics》1999,189(2):227-239
Some consequences of a nonlinear coupling between magnetic field and rotation are studied within a solar type 2D dynamo model for a spherical convective shell. The magnetic feedback on the rotation law produces two main effects. First, the torsional oscillations are excited. Second, a long-term amplitude modulation of the dynamo cycles is produced. The latter may be identified with the grand cycle of solar activity. The dynamo model seems to be in accord with the phase relations between the torsional and magnetic activity oscillations observed in the 11-year cycle as well as in the 55-year grand cycle. It, however, fails to reproduce the observationally suggested global decreasing trend in the equatorial rotation rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号