首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   6篇
  国内免费   9篇
测绘学   5篇
大气科学   70篇
地球物理   16篇
地质学   47篇
海洋学   38篇
天文学   1篇
自然地理   19篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   5篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   16篇
  2009年   90篇
  2008年   3篇
  2007年   8篇
  2006年   5篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1991年   5篇
  1984年   2篇
  1953年   3篇
  1947年   2篇
  1942年   1篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
1.
2.
We investigate the hypothesis that the atmosphere is constrained to maximize its entropy production by using a one-dimensional (1-D) vertical model. We prescribe the lapse rate in the convective layer as that of the standard troposphere. The assumption that convection sustains a critical lapse rate was absent in previous studies, which focused on the vertical distribution of climatic variables, since such a convective adjustment reduces the degrees of freedom of the system and may prevent the application of the maximum entropy production (MEP) principle. This is not the case in the radiative-convective model (RCM) developed here, since we accept a discontinuity of temperatures at the surface similar to that adopted in many RCMs.
For current conditions, the MEP state gives a difference between the ground temperature and the air temperature at the surface ≈10 K. In comparison, conventional RCMs obtain a discontinuity ≈2K only. However, the surface boundary layer velocity in the MEP state appears reasonable (≈m s−1). Moreover, although the convective flux at the surface in MEP states is almost uniform in optically thick atmospheres, it reaches a maximum value for an optical thickness similar to current conditions. This additional result may support the maximum convection hypothesis suggested by Paltridge (1978 ).  相似文献   
3.
There is a correspondence between flow in a reservoir and large scale permeability trends. This correspondence can be derived by constraining reservoir models using observed production data. One of the challenges in deriving the permeability distribution of a field using production data involves determination of the scale of resolution of the permeability. The Adaptive Multiscale Estimation (AME) seeks to overcome the problems related to choosing the resolution of the permeability field by a dynamic parameterisation selection. The standard AME uses a gradient algorithm in solving several optimisation problems with increasing permeability resolution. This paper presents a hybrid algorithm which combines a gradient search and a stochastic algorithm to improve the robustness of the dynamic parameterisation selection. At low dimension, we use the stochastic algorithm to generate several optimised models. We use information from all these produced models to find new optimal refinements, and start out new optimisations with several unequally suggested parameterisations. At higher dimensions we change to a gradient-type optimiser, where the initial solution is chosen from the ensemble of models suggested by the stochastic algorithm. The selection is based on a predefined criterion. We demonstrate the robustness of the hybrid algorithm on sample synthetic cases, which most of them were considered insolvable using the standard AME algorithm.  相似文献   
4.
5.
We consider numerical identification of the piecewise constant permeability function in a nonlinear parabolic equation, with the augmented Lagrangian method. By studying this problem, we aim at also gaining some insight into the potential ability of the augmented Lagrangian method to handle permeability estimation within the full two-phase porous-media flow setting. The identification is formulated as a constrained minimization problem. The parameter estimation problem is reduced to a coupled nonlinear algebraic system, which can be solved efficiently with the conjugate gradient method. The methodology is developed and numerical experiments with the proposed method are presented.  相似文献   
6.
7.
With multiscale permeability estimation one does not select parameterization prior to the estimation. Instead, one performs a hierarchical search for the right parameterization while solving a sequence of estimation problems with an increasing parameterization dimension. In some previous works on the subject, the same refinement is applied all over the porous medium. This may lead to over-parameterization, and subsequently, to unrealistic permeability estimates and excessive computational work. With adaptive multiscale permeability estimation, the new parameterization at an arbitrary stage in the estimation sequence is such that new degrees of freedom are not necessarily introduced all over the porous medium. The aim is to introduce new degrees of freedom only where it is warranted by the data. In this paper, we introduce a novel adaptive multiscale estimation. The approach is used to estimate absolute permeability from two-phase pressure data in several numerical examples.  相似文献   
8.
In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub-Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional, attitudinal and asset factors influencing urban vulnerability. Multiple methods were applied to cover the full range of vulnerabilities and to identify potential response strategies, including: model-based forecasts, spatial analyses, document studies, interviews and stakeholder workshops. We demonstrate the potential of the approach to assessing several dimensions of vulnerability and illustrate the complexity of urban vulnerability at different scales: households (e.g., lacking assets); communities (e.g., situated in low-lying areas, lacking urban services and green areas); and entire cities (e.g., facing encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential for strategic coordination and action. To better adapt to urban flooding and thereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning-by-doing’ process of adaptation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号