首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地质学   1篇
天文学   17篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   5篇
  2006年   8篇
  2005年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite on Mars Express have been analyzed to determine the mass composition of the escaping ion species at Mars. We have examined 77 different ion-beam events and we present the results in terms of flux ratios between the following ion species: CO+2/O+ and O+2/O+. The following ratios averaged over all events and energies were identified: CO+2/O+ = 0.2 and O+2/O+ = 0.9. The values measured are significantly higher, by a factor of 10 for O+2/O+, than a contemporary modeled ratio for the maximum fluxes which the martian ionosphere can supply. The most abundant ion species was found to be O+, followed by O+2 and CO+2. We estimate the loss of CO+2 to be by using the previous measurements of Phobos-2 in our calculations. The dependence of the ion ratios in relation to their energy ranges we studied, 0.3-3.0 keV, indicated that no clear correlation was found.  相似文献   
2.
The neutral particle detector (NPD) on board Mars Express has observed energetic neutral atoms (ENAs) from a broad region on the dayside of the martian upper atmosphere. We show one such example for which the observation was conducted at an altitude of 570 km, just above the induced magnetosphere boundary (IMB). The time of flight spectra of these ENAs show that they had energies of 0.2-2 keV/amu, with an average energy of ∼1.1 keV/amu. Both the spatial distribution and the energy of these ENAs are consistent with the backscattered ENAs, produced by an ENA albedo process. This is the first observation of backscattered ENAs from the martian upper atmosphere. The origin of these ENAs is considered to be the solar wind ENAs that are scattered back by collision processes in the martian upper atmosphere. The particle flux and energy flux of the backscattered ENAs are and , respectively.  相似文献   
3.
The Neutral Particle Detector (NPD), an Energetic Neutral Atom (ENA) sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) on board Mars Express, detected intense fluxes of ENAs emitted from the subsolar region of Mars. The typical ENA fluxes are (4-7) × 105 cm−2 sr−1 s−1 in the energy range 0.3-3 keV. These ENAs are likely to be generated in the subsolar region of the martian exosphere. As the satellite moved away from Mars, the ENA flux decreased while the field of view of the NPD pointed toward the subsolar region. These decreases occurred very quickly with a time scale of a few tens of seconds in two thirds of the orbits. Such a behavior can be explained by the spacecraft crossing a spatially constrained ENA jet, i.e., a highly directional ENA emission from a compact region of the subsolar exosphere. This ENA jet is highly possible to be emitted conically from the subsolar region. Such directional ENAs can result from the anisotropic solar wind flow around the subsolar region, but this can not be explained in the frame of MHD models.  相似文献   
4.
We present measurements with an Energetic Neutral Atom (ENA) imager on board Mars Express when the spacecraft moves into Mars eclipse. Solar wind ions charge exchange with the extended Mars exosphere to produce ENAs that can spread into the eclipse of Mars due to the ions' thermal spread. Our measurements show a lingering signal from the Sun direction for several minutes as the spacecraft moves into the eclipse. However, our ENA imager is also sensitive to UV photons and we compare the measurements to ENA simulations and a simplified model of UV scattering in the exosphere. Simulations and further comparisons with an electron spectrometer sensitive to photoelectrons generated when UV photons interact with the spacecraft suggest that what we are seeing in Mars' eclipse are ENAs from upstream of the bow shock produced in charge exchange with solar wind ions with a non-zero temperature. The measurements are a precursor to a new technique called ENA sounding to measure solar wind and planetary exosphere properties in the future.  相似文献   
5.
Imaging of low-energy neutral atoms (LENAs) in the vicinity of the Moon can provide wide knowledge of the Moon from the viewpoint of plasma physics and planetary physics. At the surface of the Moon, neutral atoms are mainly generated by photon-stimulated desorption, micrometeorite vaporization and sputtering by solar wind protons. LENAs, the energetic neutral atoms with energy range of 10-500 eV, are mainly created by sputtering of solar wind particles. We have made quantitative estimates of sputtered LENAs from the Moon surface. The results indicate that LENAs can be detected by a realistic instrument and that the measurement will provide the global element maps of sputtered particles, which substantially reflect the surface composition, and the magnetic anomalies. We have also found that LENAs around dark regions, such as the permanent shadow inside craters in the pole region, can be imaged. This is because the solar wind ions can penetrate shaded regions due to their finite gyro-radius and the pressure gradient between the solar wind and the wake region. LENAs also extend our knowledge about the magnetic anomalies and associated mini-magnetosphere systems, which are the smallest magnetospheres as far as one knows. It is thought that no LENAs are generated from mini-magnetosphere regions because no solar wind may penetrate inside them. Imaging such void areas of LENAs will provide another map of lunar magnetic anomalies.  相似文献   
6.
We have analysed ion escape at Mars by comparing ASPERA-3/Mars Express ion measurements and a 3-D quasi-neutral hybrid model. As Mars Express does not have a magnetometer onboard, the analysed IMA data are from an orbit when the IMF clock angle was possible to determine from the magnetic field measurements of Mars Global Surveyor. We found that fast escaping planetary ions were observed at the place which, according to the 3-D model, is anticipated to contain accelerated heavy ions originating from the martian ionosphere. The direction of the interplanetary magnetic field was found to affect noticeably which regions can be magnetically connected to Mars Express and to the overall 3-D Mars-solar wind interaction.  相似文献   
7.
The ASPERA-4 instrument on board the Venus Express spacecraft offers for the first time the possibility to directly measure the emission of energetic neutral atoms (ENAs) in the vicinity of Venus. When the spacecraft is inside the Venus shadow a distinct signal of hydrogen ENAs usually is detected. It is observed as a narrow tailward stream, coming from the dayside exosphere around the Sun direction. The intensity of the signal reaches several , which is consistent with present theories of the plasma and neutral particle distributions around Venus.  相似文献   
8.
We have used more than 4 years of Mars Express ion data to estimate the escape of heavy ions ( and ) from Mars. To take the limited field of view of the instrument into account, the data has been binned into spatial bins and angular bins to create average distribution functions for different positions in the near Mars space. The net escape flux for the studied low solar activity period, between May 2007 and May 2011, is 2.0 ± 0.2 × 1024 s−1. The escape has been calculated independently for four different quadrants in the YMSO − ZMSO plane, south, dusk, north and dawn. Escape is highest from the northern and dusk quadrants, 0.6 ± 0.1 × 1024 s−1, and smallest from the south and dawn quadrants, 0.4 ± 0.1 × 1024 s−1. The flux ratio of molecular ( and ) to O+ ions is 0.9 ± 0.1, averaged over all quadrants. The flux difference between the north and south quadrants is statistically significant, and is presumed to be due to the presence of significant crustal magnetic fields in the southern hemisphere, reducing the outflow. The difference between the dawn and dusk quadrants is likely due to the magnetic tension associated with the nominal Parker angle spiral, which should lead to higher average magnetic tension on the dusk side. The escape increases during periods of high solar wind flux and during times when co-rotating interaction regions (CIR) affect Mars. In the latter case the increase is a factor 2.4-2.9 as compared to average conditions.  相似文献   
9.
Measurements of energetic neutral atoms (ENA) generated in the magnetosheath at Mars are reported. These ENAs are the result of charge exchange collisions between solar wind protons and neutral oxygen and hydrogen in the exosphere of Mars. The peak of the observed ENA flux is . For the case studied here, i.e., the passage of Mars Express through the martian magnetosheath around 20:15 UT on 3 May 2004, the measurements agree with an analytical model of the ENA production at the planet. It is possible to find parameter values in the model such that the observed peak in the ENA count rate during the spacecraft passage through the magnetosheath is reproduced.  相似文献   
10.
Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X‐ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号