首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   2篇
自然地理   6篇
  2022年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
阿穆尔板块西部边界在蒙古境内的空间位置尚不清楚,并且活动断层构造及其沿线地壳的应力状态研究较少。本文在沿此边界的三个区域——杭爱—肯特构造鞍部、布尔古特地块(鄂尔浑—土拉交汇处)和色楞格地块(包括色楞格凹陷和布伦—努鲁隆起),利用空间图像解译、地形起伏度分析、地质构造资料以及构造压裂和沿裂缝位移资料重建构造古应力,对活动断层进行研究。研究表明,活动断裂继承了古生代和中生代古构造的非均质性。这些断层沿着板块边界并不是单一的带,而是成簇的。它们的运动取决于走向:亚纬向断层是具有一定逆分量的左旋走滑断层,北西向断层是逆断层或逆冲断层,通常具有右旋走滑分量,海底断层是右旋走滑断层,北东向断层是正断层。位于色楞格凹陷和杭爱东部的断裂构造的活动始于上新世。逆断层和走滑断层与上新世情况不符,但多与更新世地貌相符,表明其活动年代较晚,为更新世时期。利用构造断裂和沿断裂的位移,重建活动断裂带变形末阶段的应力应变状态,结果表明断裂在最大挤压轴的北北东和北东方向上以压缩和走滑为主。只有在色楞格凹陷内,以扩张和走滑类型的应力张量为主,且在最小挤压轴的北西走向尤为显著。在南部,杭爱东部(鄂尔浑地堑)内有1个以扩张机制为主的局部区域,说明蒙古中部断裂在更新世—全新世阶段的活动以及现代地震活动主要受与印度斯坦和欧亚大陆汇聚过程相关的东北方向的附加水平挤压的控制。使研究区地壳产生走滑变形、贝加尔湖裂谷发散活动以及阿穆尔板块东南运动的另一个因素是东南方向软流圈流动对岩石圈底部的影响。阿穆尔板块和蒙古地块之间的边界在构造结构上是零碎的,代表了覆盖整个蒙古西部变形带的边缘部分。  相似文献   
2.
Late Pleistocene glaciers around Darhad Basin advanced to near their maximum positions at least three times, twice during the Zyrianka glaciation (at ∼ 17-19 ka and ∼ 35-53 ka), and at least once earlier. The Zyrianka glaciers were smaller than their predecessors, but the equilibrium-line altitude (ELA) difference was < 75 m. End moraines of the Zyrianka glaciers were ∼ 1600 m asl; ELAs were 2100-2400 m asl. 14C and luminescence dating of lake sediments confirm the existence of paleolake highstands in Darhad Basin before ∼ 35 ka. Geologic evidence and 10Be cosmic-ray exposure dating of drift suggests that at ∼ 17-19 ka the basin was filled at least briefly by a glacier-dammed lake ∼ 140 m deep. However, lake sediments from that time have not yet been recognized in the region. A shallower paleolake briefly occupied the basin at ∼ 11 ka, but between ∼ 11 and 17 ka and after ∼ 10 ka the basin was probably largely dry. The timing of maximum glacier advances in Darhad appears to be approximately synchronous across northern Mongolia, but different from Siberia and western Central Asia, supporting the inference that paleoclimate in Central Asia differed among regions.  相似文献   
3.
4.
We identify and describe a series of east–west left-lateral strike-slip faults (named the Songino-Margats, the Hag Nuur, the Uliastay and the South Hangay fault systems) in the Hangay mountains of central Mongolia: an area that has little in the way of recorded seismicity and which is often considered as a rigid block within the India–Eurasia collision zone. The strike-slip faults of central Mongolia constitute a previously unrecognized hazard in this part of Mongolia. Each of the strike-slip faults show indications of late Quaternary activity in the form of aligned sequences of sag-ponds and pressure-ridges developed in alluvial deposits. Total bed-rock displacements of ∼3 km are measured on both the Songino-Margats and South Hangay fault systems. Bed-rock displacements of 11 km are observed across the Hag Nuur fault. Cumulative offset across the Uliastay fault systems are unknown but are unlikely to be large. We have no quantitative constraint on the age of faulting in the Hangay. The ≤20 km of cumulative slip on the Hangay faults might, at least in part, be inherited from earlier tectonic movements. Our observations show that, despite the almost complete absence of instrumentally recorded seismicity in the Hangay, this part of Mongolia is cut through by numerous distributed strike-slip faults that accommodate regional left-lateral shear between Siberia and China. Central Mongolia is thus an important component of the India–Eurasia collision that would be overlooked in models of the active tectonics based on the distribution of seismicity. We suggest that active faults such as those identified in the Hangay of Mongolia might exist in other, apparently aseismic, regions within continental collision zones.  相似文献   
5.
6.
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号