首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
测绘学   1篇
地球物理   1篇
地质学   14篇
海洋学   1篇
天文学   3篇
自然地理   1篇
  2020年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
The Paleoproterozoic Ruttan Cu–Zn volcanogenic massive-sulfide (VMS) deposit is a large, relatively low grade, bimodal-siliciclastic type deposit in the Rusty Lake volcanic belt of northern Manitoba. The deposit contained over 82.8 million tonnes of massive sulfide, of which 55.7 million tonnes were mined from 1973 to 2002. The deposit consists of a series of moderately to steeply dipping, south-facing lenses that extend along strike at the surface for 1.1 km and to a depth of 1.0 km. These lenses occur within a steeply dipping, bimodal volcanic, volcaniclastic and siliciclastic sequence. In the immediate mine area, transitional calc-alkalic to high-silica (tholeiitic), felsic, and intermediate volcanic/volcaniclastic rocks of the Mine Sequence are host to, and intercalated with, the massive-sulfide lenses. Transitional tholeiitic to calc-alkalic basalt and andesite are present in the footwall sequence, approximately 500 m down-section from the ore horizon. The overlying rocks are predominantly fine-grained volcaniclastics and siliciclastics, but include polyfragmental agglomerate that contains mafic bombs and scoriaceous felsic fragments. Syn-depositional felsic and mafic dikes, sills, and apophyses are ubiquitous throughout the Mine Sequence, including the ore lenses, indicating continued, near-vent magmatism, and volcanism during ore formation. Fabrics in altered hostrocks have consistent, down-plunge stretching lineations to the SSE that suggest the deposit has been elongated by a factor of ~1.2–1.5; otherwise, the deposit is remarkably undeformed. Syn- and post-depositional faults in the mine area have relatively minor displacements up to tens of meters. Proximal (within 200 m) footwall rocks exhibit moderate to strong chloritization, characterized by the upper greenschist to lower amphibolite facies assemblages that include cordierite–almandine–andalusite–sillimanite–biotite ± staurolite ± anthophyllite ± talc, and local silicification. The proximal hanging wall rocks are characterized by sericite ± gahnite alteration, which is restricted to within approximately 75 m of the uppermost lenses. Additional gangue minerals are anhydrite and carbonate minerals (siderite, dolomite, ankerite, and calcite), as well as chlorite, sericite, biotite, talc, and quartz. Carbonate (excluding siderite), potassium feldspar, silicification and epidotization are common distal alteration zones in the footwall to the Mine Sequence several kilometers to the northeast. There are three principal groups of massive sulfide lenses; the East lenses, the West lenses, and the Western Anomaly lenses to the far west. In general, Cu is relatively enriched at the stratigraphic base and in the center of the deposit, whereas Zn is enriched upsection and at the outer margins. Some of the Zn-rich ore exhibits primary mineralogical layering. Parts of the West and Western Anomaly lenses show two layers with Cu-rich bases and Zn-rich tops. The massive sulfide is typically 10–40-m thick; one area along the margin of the main lenses is over 130-m thick and may represent deposition adjacent to a syn-depositional fault. The main sulfide phases are pyrite, pyrrhotite, chalcopyrite, sphalerite, and galena, with tetrahedrite as the most abundant trace phase. Gahnite is ubiquitous in the chlorite-rich assemblages adjacent to the ore lenses. The average base, precious and trace metal contents estimated from Cu and Zn concentrates, and from millhead grades and recoveries. Metals easily transported as chloride and bisulfide complexes in hydrothermal fluids including: Pb, Ag, In, Cu, Cd, Au, and Zn are enriched by 1.5–2.5 orders of magnitude in comparison to the bulk continental crust. Other elements such as Sn, Mo, and As are at near-crustal concentrations, whereas Mn, Ga, and Co are significantly depleted in comparison to the crust. Calculated metal concentrations in the average hydrothermal fluid based on the average metal contents are comparable to, or higher than those measured at sediment covered ridge hydrothermal systems, which precipitate much of their metal budget in the subsurface. Average rare earth element contents for the sulfide are light rare earth element enriched (LaN/YbN=22) and range from 0.45 to 0.02x chondritic values, with a moderate negative Eu anomaly (Eu*=0.51). Metal and trace element contents in the Ruttan exhalite horizon, and in proximal (within 1–2 km) exhalites along strike from the 0.6 million tonne Dar-2 Cu–Zn deposit 12 km south of Ruttan, have positive Eu anomalies, whereas negative Eu anomalies are present at distance. The positive Eu anomalies reflect high temperature paleoseafloor hydrothermal venting and precipitation of Eu2+-enriched clays and possibly carbonates, and indicate proximity to base-metal deposits. Silver and lead are also enriched in the exhalites near the deposits, whereas Mn is enriched at ~1–3 km along strike, but not consistently. Editorial handling: B. Gemmel An erratum to this article is available at .  相似文献   
2.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   
3.
This article introduces a type of DBMS called the Intentionally‐Linked Entities (ILE) DBMS for use as the basis for temporal and historical Geographical Information Systems. ILE represents each entity in a database only once, thereby mostly eliminating redundancy and fragmentation, two major problems in Relational and other database systems. These advantages of ILE are realized by using relationship objects and pointers to implement all of the relationships among data entities in a native fashion using dynamically‐allocated linked data structures. ILE can be considered to be a modern and extended implementation of the E/R data model. ILE also facilitates storage of things that are more faithful to the historical records, such as gazetteer entries of places with imprecisely known or unknown locations. This is difficult in Relational database systems but is a routine task using ILE because ILE is implemented using modern memory allocation techniques. We use the China Historical GIS (CHGIS) and other databases to illustrate the advantages of ILE. This is accomplished by modeling these databases in ILE and comparing them to the existing Relational implementations.  相似文献   
4.
Abstract— Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled as a result of the Chicxulub Scientific Drilling Project (CSDP), has been analyzed to investigate the relationship between opaque mineralogy and rock magnetic properties. Twenty one samples of suevite recovered from the depth range 818–894 m are generally paramagnetic, with an average susceptibility of 2000 times 10?6 SI and have weak remanent magnetization intensities (average 0.1 A/m). The predominant magnetic phase is secondary magnetite formed as a result of low temperature (<150 °C) alteration. It occurs in a variety of forms, including vesicle infillings associated with quartz and clay minerals and fine aggregates between plagioclase/diopside laths in the melt. Exceptional magnetic properties are found in a basement clast (metamorphosed quartz gabbro), which has a susceptibility of >45000 times 10?6 SI and a remanent magnetization of 77.5 A/m. Magnetic mafic basement clasts are a common component in the Yax‐1 impactite sequence. The high susceptibility and remanence in the mafic basement clasts are caused by the replacement of amphiboles and pyroxenes by an assemblage with fine <1 μm magnetite, ilmenite, K‐feldspar, and stilpnomelane. Replacement of the mafic minerals by the magnetic alteration assemblage occurred before impact. Similar alteration mechanisms, if operative within the melt sheet, could explain the presence of the high amplitude magnetic anomalies observed at Chicxulub.  相似文献   
5.
Increasing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. In this study, methods were developed for the analysis of 14 PPCPs in biosolids and soils using pressurized liquid extraction, solid phase extraction and liquid chromatography‐tandem mass spectrometry. Recoveries were over 50% for all analytes except diphenhydramine (?30%) in soils. Soil properties or type of biosolids showed minor effects on method recoveries. Estimated method limits of quantification (LOQ) range from 0.1–15 ng g–1 for soil and 0.3–27 ng g–1 for biosolids. A field study utilizing the methods revealed that other than carbamazepine‐10,11‐epoxide, all targeted compounds were detected in biosolids. Diphenhydramine, fluoxetine, triclosan and triclocarban were detected up to the μg g–1 range with the highest concentration of 23 μg g–1 for triclocarban. Seven of the PCCPs found in biosolids were also detected in agricultural soils amended with these biosolids and several (carbamazepine, diphenhydramine, and triclocarban) appeared to be persistent in soils. Triclocarban was also found most abundant in soils with the highest average concentration of 0.2 μg g–1 while the rest of compounds were in the lower ng g–1 range. Generally, the concentrations found on the fields were 2–3 degrees of magnitude lower than in the biosolids, which is likely to be due to dilution, degradation and leaching processes.  相似文献   
6.
7.
The Amy Lake PGE zone is a “low-sulfide-type” Cu-(Ni-)PGE mineralization in the East Range footwall of the 1.85 Ga Sudbury Igneous Complex occurring in a 100-m-wide Sudbury Breccia belt that coincides with an impact-related major fracture zone (Bay Fault zone). Detailed hydrothermal alteration mapping, fluid inclusion, trace element, and stable isotope studies revealed a complex alteration and mineralization history in a multi-source, multi-stage Sudbury-related hydrothermal system. The two major stages of syn-Sudbury hydrothermal activity are characterized by similarly high-salinity, high-temperature fluids that are (1) locally derived from footwall granophyre bodies, and typified with high Ni/Cu and PGE/S ratios and high REE contents (magmatic–hydrothermal stage), and (2) a more voluminous Cu–Ni–PGE-rich fluid flux probably originated from the Sudbury Igneous Complex/footwall contact (hydrothermal stage). The second hydrothermal flux was introduced by brittle fractures in the area and resulted in a complex zonation of alteration assemblages and mineralization governed by local footwall composition. The Sudbury-related hydrothermal event was overprinted by shear-related epidote veining and calcite–chlorite replacement, both regionally present in the Sudbury structure. Based on analogies, the most important factors involved in the formation of hydrothermal low-sulfide mineralization are proposed to be (1) accumulation of PGE-enriched fluids, (2) large-scale brittle structures as conduits to these fluids, and (3) adequate host rock composition as a chemical trap resulting in sulfide and PGM precipitation. In environments meeting these criteria, hydrothermal PGE mineralization is known to have formed not only in the Sudbury footwall but also from mafic–ultramafic intrusions associated with primary magmatic PGE from several locations around the world.  相似文献   
8.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   
9.
This paper is a comparison and compilation of lichenometric and geomorphic studies performed by two independent teams in the Cordillera Blanca, Peru, in 1996 and 2002 on 66 “Little Ice Age” moraines of 14 glaciers. Using eleven new control points, we recalibrated the initial rapid growth phase of the previously established Rhizocarpon subgenus Rhizocarpon growth curve. This curve was then used to estimate the age of “Little Ice Age” moraines. The time of deposition of the most prominent and numerous terminal and lateral moraines on the Pacific-facing side of the Cordillera Blanca (between AD 1590 and AD 1720) corresponds to the coldest and wettest phase in the tropical Andes as revealed by ice-core data. Less prominent advances occurred between AD 1780 and 1880.  相似文献   
10.
The coals of the upper part of the Mansfield, Brazil, and the lower part of the Staunton Formations (Atokan and Desmoinesian, Pennsylvanian) in Indiana (Illinois Basin) are characteristically thin and discontinuous. As a result, problems with correlation and identification of the seams have persisted for both researchers and industry. These discrepancies affect coal exploration, mine planning, and subsequently coal-fired utilities. This study presents exploration and operational examples demonstrating some of the correlation problems associated with the coals of the Brazil Formation, and the Upper Block and Lower Block, in particular, and the surrounding upper part of the Mansfield Formation and lower part of the Staunton Formations. Based on exploration boreholes, mine scale observations, and coal quality and petrographic data, this study suggests that (1) the coal mapped as the Upper Block Coal Member of Clay County may, in fact, be the same seam as the Lower Block Coal Member of Daviess County; and (2) the Lower Block coal of Clay County is not present south of the Switz City area of central Greene County, IN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号