首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   1篇
地质学   9篇
天文学   1篇
自然地理   1篇
  2015年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
2.
Over the past decade researchers working on the rocks of the Beaufort Group in the main Karoo Basin of South Africa have vastly increased our understanding of this important Permo-Triassic sequence. Many new fossil forms have been discovered, allowing for breakthroughs into the biodiversity, biogeography and biostratigraphy of the group. Taxonomic and phylogenetic advances are many and varied, and cover most of the vertebrate taxa, but with emphasis placed on the temnospondyl amphibians, archosauriforms and non-mammalian synapsids, in particular the anomodontia. Biostratigraphic breakthroughs have centered on the Middle Permian Eodicynodon and Tapinocephalus assemblage zones, the Late Permian Dicynodon Assemblage Zone, and the Triassic Lystrosaurus and Cynognathus assemblage zones. Correlation of these biozones with better dated sequences in Europe, Russia and China has allowed for many chronostratigraphic refinements, which are in turn vital for sequence stratigraphical analysis of the basin fill. Based on fossil data, both the lower (Ecca–Beaufort) and upper (Beaufort–Molteno) contacts of the group have been proved to be highly diachronous. The refined chronostratigraphic framework has also allowed for a better analysis of the basin evolution through time, particularly in terms of the correlation of external stimuli that affect basin sedimentation patterns.  相似文献   
3.
The main Karoo Basin of South Africa is a Late Carboniferous–Middle Jurassic retroarc foreland fill, developed in front of the Cape Fold Belt (CFB) in relation to subduction of the palaeo-Pacific plate underneath the Gondwana plate. The Karoo sedimentary fill corresponds to a first-order sequence, with the basal and top contacts marking profound changes in the tectonic setting, i.e. from extensional to foreland and from foreland to extensional, respectively. Sedimentation within the Karoo Foreland Basin was closely controlled by orogenic cycles of loading and unloading in the CFB. During orogenic loading, episodes of subsidence and increase in accommodation adjacent to the orogen correlate to episodes of uplift and decrease in accommodation away from the thrust-fold belt. During orogenic unloading the reverse occurred. As a consequence, the depocentre of the Karoo Basin alternated between the proximal region, during orogenic loading, and the distal region, during orogenic unloading. Orogenic loading dominated during the Late Carboniferous–Middle Triassic interval, leading to the accumulation of thick foredeep sequences with much thinner forebulge correlatives. The Late Triassic–Middle Jurassic interval was dominated by orogenic unloading, with deposition taking place in the distal region of the foreland system and coeval bypass and reworking of the older foredeep sequences. The out of phase history of base-level changes generated contrasting stratigraphies between the proximal and distal regions of the foreland system separated by a stratigraphic hinge line. The patterns of hinge line migration show the flexural peripheral bulge advancing towards the craton during the Late Carboniferous–Permian interval in response to the progradation of the orogenic front. The orogenward migration of the foreland system recorded during the Triassic–Middle Jurassic may be attributed to piggyback thrusting accompanied by a retrogradation of the centre of weight within the orogenic belt during orogenic loading (Early Middle Triassic) or to the retrogradation of the orogenic load through the erosion of the orogenic front during times of orogenic unloading (Late Triassic–Middle Jurassic).  相似文献   
4.
The Abbotsford Landslide of 8 August 1979 occurred in an urban area of Dunedin, New Zealand, causing much damage to houses and urban infrastructure. Rapid failure occurred after weeks of preliminary movements, resulting in the formation of a approximately 5 million m3 block slide. It caused the loss of 69 houses, with an overall cost of about NZ $10–13 million. After several months of investigations, a commission of inquiry found that unfavorable geology (weak clay layers in a 7°-dip slope) was the underlying cause of the landslide. An old sand quarry at the toe of the slope and a leaking water main above the slide area were found to be man-made factors that contributed to the failure. Slope stability analysis showed that after sand excavation (approximately 300,000 m3), the water table had to rise 0.3 m less for failure to occur. Because the quarry closed 10 years before the landslide occurred, it is concluded that a long-term rise in groundwater levels because of the increased rainfall over the previous decade and leakage from the water main controlled the timing of the failure and, in this sense, are considered to have triggered the landslide.  相似文献   
5.
Third-order sequence stratigraphic analysis of the Early Permian marine to continental facies of the Karoo Basin provides a case study for the sedimentation patterns which may develop in an underfilled foreland system that is controlled by a combination of supra- and sublithospheric loads. The tectonic regime during the accumulation of the studied section was dominated by the flexural rebound of the foreland system in response to orogenic quiescence in the Cape Fold Belt, which resulted in foredeep uplift and forebulge subsidence. Coupled with flexural tectonics, additional accommodation was created by dynamic loading related to the process of subduction underneath the basin. The long-wavelength dynamic loading led to the subsidence of the peripheral bulge below base level, which allowed for sediment accumulation across the entire foreland system.A succession of five basinwide regressive systems tracts accumulated during the Artinskian (5 My), consisting of foredeep submarine fans and correlative forebulge deltas. The progradation of submarine fans and deltaic systems was controlled by coeval forced and normal regressions of the proximal and distal shorelines of the Ecca interior seaway respectively. The deposition of each regressive systems tract was terminated by basinwide transgressive episodes, that may be related to periodic increases in the rates of long-wavelength dynamic subsidence.  相似文献   
6.
Recent collecting in exposures of the lowermost Burgersdorp Formation (Beaufort Group), of the Karoo Basin of South Africa, has revealed a previously unknown fish fauna from the Early Triassic (Scythian), lowermost Cynognathus Assemblage Zone (CAZ), which forms an important component of the total vertebrate assemblage. The newly discovered fish material includes lungfish, saurichthyids, and a large microfauna that includes numerous isolated chondrichthyan teeth, two fin spine fragments, and actinopterygian scales and teeth. The latest fish finds, together with the lowermost Cynognathus Assemblage Zone vertebrate faunas, make this Karoo Basin Assemblage Zone one of the most diverse Early Triassic faunal assemblages, comparable in faunal diversity to those from the Czatkowice Formation (Poland) and the Arcadia Formation (Australia). The presence of the lungfish Ptychoceratodus phillipsi in the early Middle Triassic Cynognathus Assemblage Zone (Subzone B), and in the underlying latest Early Triassic Cynognathus Assemblage Zone (Subzone A), indicates that these lungfish could serve as range index fossils within the CAZ, and thus are potentially useful biostratigraphic markers across the Early-Middle Triassic boundary. Furthermore the ‘new’ fish fauna provides a vital marine realm link in particular with the faunas of Madagascar and Australia, that is unavailable using the tetrapod faunal elements of the lower CAZ.  相似文献   
7.
8.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   
9.
Floodplain wetlands are common features of rivers in southern Africa, but they have been little studied from a geological or geomorphological perspective. Study of the upper Klip River, eastern Free State, South Africa, indicates strong geological controls on the formation of alluvial meanders and associated floodplain wetlands. Along this river, pronounced and abrupt changes in valley width are strongly linked to lithological variations. Where weakly cemented sandstone crops out, the Klip has laterally eroded bedrock and carved valleys up to 1500 m wide. In these valleys, the river meanders (sinuosity up to ~1·75) on moderate gradients (<0·001) within extensive floodplains marked by numerous oxbow lakes, backswamps and abandoned channels, many of which host substantial wetlands. In contrast, where highly resistant dolerite crops out, lateral erosion of bedrock is restricted, with the Klip tending instead to erode vertically along joints or fractures. Here, valleys are narrower (<200 m), channel‐bed gradients are steeper (>0·003), the river follows a much straighter course (sinuosity ~1·10–1·34), and floodplains are restricted in width. Long‐term landscape development in the Klip and numerous similar catchments depends on the interaction between fluvial processes in the sandstone and dolerite valleys. In the sandstone valleys, vertical erosion rates are controlled by erosion rates of the more resistant dolerites downstream. Hence, in the short‐ to medium‐term (decades to tens of thousands of years), lateral erosion dominates over vertical erosion, with the river concomitantly planing sandstone in the channel floor and reworking floodplain sediments. The thickness of alluvial fill in the sandstone valleys is limited (<4 m), but the resultant meanders are naturally dynamic, with processes such as point bar deposition, cutoff formation and channel avulsion resulting in an assemblage of fluvial landforms. In the longer term (greater than tens of thousands of years), however, vertical erosion will occur in the sandstone valleys as the downstream dolerites are lowered by erosion, resulting in channel incision, floodplain abandonment, and desiccation of the wetlands. Identification of the geological controls on meander and wetland formation provides information vital for the design of effective management guidelines for these ecologically rich habitats, and also contributes to a better understanding of rivers that are intermediate between fully alluvial and fully bedrock. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号