首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   7篇
测绘学   1篇
地球物理   26篇
地质学   23篇
海洋学   1篇
天文学   30篇
自然地理   11篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   9篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1981年   1篇
  1978年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
2.
TAM5.29 is an extraterrestrial dust grain, collected on the Transantarctic Mountains (TAM). Its mineralogy is dominated by an Fe‐rich matrix composed of platy fayalitic olivines and clasts of andradite surrounded by diopside‐jarosite mantles; chondrules are absent. TAM5.29 records a complex geological history with evidence of extensive thermal metamorphism in the presence of fluids at T < 300 °C. Alteration was terminated by an impact, resulting in shock melt veins and compaction‐orientated foliation of olivine. A second episode of alteration at lower temperatures (<100 °C) occurred postimpact and is either parent body or terrestrial in origin and resulted in the formation of iddingsite. The lack of chondrules is explained by random subsampling of the parent body, with TAM5.29 representing a matrix‐only fragment. On the basis of bulk chemical composition, mineralogy, and geological history TAM5.29 demonstrates affinities to the CVox group with a mineralogical assemblage in between the Allende‐like and Bali‐like subgroups (CVoxA and TAM5.29 are rich in andradite, magnetite, and FeNiS, but CVoxA lacks hydrated minerals, common in TAM5.29; conversely, CVoxB are rich in hydrated phyllosilicates but contain almost pure fayalite, not found in TAM5.29). In addition, TAM5.29 has a slightly different metasomatic history, in between the oxidized and reduced CV metamorphic grades while also recording higher oxidizing conditions as compared to the known CV chondrites. This study represents the third CV‐like cosmic dust particle, containing a unique composition, mineralogy, and fabric, demonstrating variation in the thermal metamorphic history of the CV parent body(‐ies).  相似文献   
3.
The location reliability of the earthquakes occurred at Phlegraean Fields has been analyzed, and the theoretical errors, inferred from the diagonal elements of the covariance matrix, have been estimated. Using only first P-phase arrivals to the local network (22 stations) and assuming a reading error of 0.05 sec., the average error on the spatial coordinates is estimated to be of the order of 0.2 km.Shallow events (depth<1 km) are very poorly constrained in depth at the borders of the network. The use of both P and S arrival times, recorded by a smaller three component network (10 stations), improves the depth determination.Further analysis has been performed on a set of about 350 selected earthquakes, using two different velocity models.Differences in depth considerably greater than the theoretical errors, and showing highly different patterns have been found.Tests with artificial events, randomly distributed in space, indicate that the observed depth distribution is essentially due to the used velocity model.  相似文献   
4.
Pyroxenes of pigeonitic and augitic bulk compositions in H3–4 chondritic meteorites commonly exhibit sigmoidal precipitates, rather than the elsewhere common lamellar associations. Most often, submicrometric sigmoids with calcic clinopyroxene composition occur within clinoenstatite; more rarely, clinoenstatite sigmoids occur within calcic clinopyroxene. The sigmoids appear as 001 terminated lamellae, with terminations rotated in opposite directions towards the 100 orientation. Pre-exsolution pigeonite and augite formed at temperatures higher than 980 °C, whereas sigmoidal exsolution occurred between 990 and 830 °C. Local anomalous lattice parameters determined by electron diffraction suggest that lattice parameters are most strained where the exsolution texture is most poorly defined. Shear strain occurs during exsolution due to mismatching lattice parameters and variable angles. In response to shear stress, the lamellae relax and assume sigmoidal strained morphologies. Sigmoidal exsolution is strongly controlled by (100) orthoenstatite stacking faults that possibly trigger exsolution.  相似文献   
5.
6.
7.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   
8.
We evaluate the performance of a hand‐held XRF (HHXRF) spectrometer for the bulk analysis of iron meteorites. Analytical precision and accuracy were tested on metal alloy certified reference materials and iron meteorites of known chemical composition. With minimal sample preparation (i.e., flat or roughly polished surfaces) HHXRF allowed the precise and accurate determination of most elements heavier than Mg, with concentrations > 0.01% m/m in metal alloy CRMs, and of major elements Fe and Ni and minor elements Co, P and S (generally ranging from 0.1 to 1% m/m) in iron meteorites. In addition, multiple HHXRF spot analyses could be used to determine the bulk chemical composition of iron meteorites, which are often characterised by sulfide and phosphide accessory minerals. In particular, it was possible to estimate the P and S bulk contents, which are of critical importance for the petrogenesis and evolution of Fe‐Ni‐rich liquids and iron meteorites. This study thus validates HHXRF as a valuable tool for use in meteoritics, allowing the rapid, non‐destructive (a) identification of the extraterrestrial origin of metallic objects (i.e., archaeological artefacts); (b) preliminary chemical classification of iron meteorites; (c) identification of mislabelled/unlabelled specimens in museums and private collections and (d) bulk analysis of iron meteorites.  相似文献   
9.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号