首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
大气科学   3篇
地球物理   9篇
地质学   21篇
天文学   4篇
自然地理   4篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   7篇
  2009年   1篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2000年   3篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有41条查询结果,搜索用时 93 毫秒
1.
Processes and rates of weathering in representative tuff obtained from a Green Tuff region were directly examined using a new fluorescent approach. This approach was developed to visualize microscopically the microcracks and micropores that contribute to deterioration. The following observations were made. Progression of tuff weathering is caused by a delicate balance between chemical alteration and physical disintegration. Weathering occurs in many hidden microcracks and micropores not detected under natural light, but which can be clearly visualized under ultraviolet light. Water pathways, such as microcracks and cavities, accelerated the chemical alteration by increasing the effective surface area of rocks in contact with water. As the reaction proceeds, the constituent materials loosen and alteration products become widespread in the matrix. Secondary amorphous to poorly crystallized materials, such as iron hydroxide and aluminosilicate, precipitate on the fracture surfaces, slowing the progress of weathering. At the ultimate stage of weathering in tuff, all cracks and most of the micropores are filled with secondary materials. These observations on a microscopic scale during tuff weathering agree with the assessment of weathering obtained by measuring porosity, P-wave velocity and tensile strength.  相似文献   
2.
Abstract Melting experiments have been carried out on an olivine andesite of Mt Yakushi-Yama from the Miocene Setouchi volcanic belt in northeastern Shikoku, Japan. This andesite has been characterized by a low ratio of FeO*/Mg° (= 0.78). Phase relations have been determined within the pressure range of 2.8 to 19.3 kbar at 1000-1300°C under anhydrous and water-saturated conditions. At pressures less than 8.8 kbar, olivine is a liquidus phase. Orthopyroxene appears on the liquidus at 9.3 kbar under the anhydrous conditions. The multiple saturation point rises up to 17.5 kbar for water-saturated experiments. The andesite melt coexists with olivine and orthopyroxene just below the liquidus at 8.8–9.3 kbar and 1230°C for dry conditions, and at 17.5 kbar and 1060°C under water-saturated conditions. These experimental results indicate that the Yakushi-Yama olivine andesite magma could coexist with a harzburgitic mantle at depths between about 30 and 60 km, and at temperatures between 1060 and 1230°C. Experimental data also suggest a possibility that a high magnesian andesite magma would be generated by a direct partial melting of the uppermost harzburgitic mantle under anhydrous conditions.  相似文献   
3.
Cobalt is obtained mainly as a byproduct of the mining and metallurgical processing of copper and nickel. The amount of minable cobalt has a characteristic supply limit, which is dependent upon demand for copper and nickel. It is considered that cobalt consumption will be affected by the amount mined in the near future, because world demand has been gradually increasing, while the production from copper sulfide ores in Zaire and Zambia, major producing countries, has decreased for political, economical and technological reasons. The world demand for cobalt has surpassed the world mine production, and cobalt sales from the National Defense Stockpile of the United States and exports from Russia and cobalt recovered from stockpiled intermediates contributed to the supply in 1994. It is concluded, from a statistical point of view, that this trend of shortage and high prices for cobalt will continue in the near future.  相似文献   
4.
Tadao  Nishiyama  Aiko  Tominaga  Hiroshi  Isobe 《Island Arc》2007,16(1):16-27
Abstract We carried out hydrothermal experiments in the system dolomite‐quartz‐H2O to track the temporal change in reaction rates of simultaneous reactions during the development of reaction zones. Two types of configurations for the starting materials were prepared: dolomite single crystals + quartz powder + water and quartz single crystals + dolomite powder + water, both sealed separately in gold capsules. Runs at 0.1GPa and 600°C with cold seal pressure vessels gave the following results. (i) In short duration (45–71 h) runs metastable layer sequences involving wollastonite and talc occur in the reaction zone, whereas they disappear in longer duration (168–336 h) runs. (ii) The layer sequence of the reaction zones in short duration runs differs from place to place on the dolomite crystal even in the same run. (iii) The diversity of layer sequences in the short duration runs merges into a unique layer sequence in the longer duration runs. (iv) The reaction zone develops locally on the dolomite crystal, but no reaction zone was observed on the quartz crystal in any of the runs. The lines of evidence (i)–(iii) show that the system evolves from an initial transient‐ to a steady‐state and that the kinetic effect is important in the development of reaction zones. A steady diffusion model for the unique layer sequence Qtz/Di/Fo + Cal/Dol + Cal/Dol shows that the Dol + Cal layer cannot be formed by diffusion‐controlled process and that the stability of the layer sequence Qtz/Di/Fo + Cal/Dol depends not only on L‐ratios (a = /LCaOCaO and b = /LMgOMgO) but also on the relative rate P = (−2ξ1ξ2)/(–ξ1 − 2ξ2) of competing reactions: Dol + 2Qtz = Di + 2CO2 (ξ1) and 2Dol + Qtz = Fo + 2Cal + 2CO2 (ξ2). For smaller P the stability field will shift to higher values of a and b. The steady diffusion model also shows that the apparent‐non‐reactivity on the quartz surface can be attributed to void formation in a large volume fraction in the diopside layer.  相似文献   
5.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   
6.
Acid mine drainage (AMD) is a widespread environmental problem associated with working and abandoned mining operations. It results from the microbial oxidation of pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. Pyrite microencapsulation, utilizing silica coating, is a novel approach for controlling AMD that has been shown to be very effective in controlling pyrite oxidation. The roles of the solution pH and silica concentration in the formation mechanism for the AMD-preventing coating were investigated. A silica coating can be formed from silica solution at pH 7, at which the amount of Fe eluted from pyrite into the solution is small. No coating was formed at other pH values, and the amounts of eluted Fe were larger than at pH 7, especially at pH 11. The silica coating forms from 2,500 to 5,000 mg/L silica solutions, but not from 0 or 1,000 mg/L silica solutions. The coating formation rate was slower in the 2,500 mg/L silica solution than in the 5,000 mg/L silica solution. The formation of silica coating on pyrite surfaces depends on three main steps: formation of Fe(OH)3 on the surface of pyrite, reaction between Fe(OH)3 and silicate in the solution on the pyrite surface, and growth of the silica layer on the first layer of silica. The best pH condition to enable these steps was around 7, and the silica coating formation rate can be controlled by the concentration of silica.  相似文献   
7.
An artificial cloud seeding experiment was performed over the Japan Sea in winter to show how massive seeding could be effective to mitigate heavy snowfall damage. The results showed that 20 min after cloud seeding, a portion of the radar echo beneath the seeding track was weakened to divide the radar echo into two parts. In order to analyze the results, a numerical simulation was conducted by using the Weather Research and Forecasting model verion 3.5.1. In this simulation, the seeding effects were represented as phenomena capable of changing rain particles by accreting cloud ice and snow to form graupel particles and by changing cloud liquid water to snow particles. The graupel particles fell rapidly, thus temporarily intensifying the rainfall, which subsequently decreased. Therefore, the weakened radar echo in the field experiment is deemed to have been caused by the increase in rapidly falling graupel particles.  相似文献   
8.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   
9.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   
10.
We recorded one‐ and two‐dimensional solid‐state nuclear magnetic resonance spectra of meteoric insoluble organic matter with unprecedented sensitivity and resolution permitting us to reveal unambiguous spectroscopic fingerprints relevant to its molecular and isotopic features. Two‐dimensional 1H‐1H and 1H‐13C correlation experiments have unveiled the spatial proximity between aliphatic and aromatic groups proving a highly branched character of a rigid macromolecular network composed of short aliphatic chains linking together small aromatic units. One‐dimensional 2H and two‐dimensional 1H‐2H correlation spectroscopy delivered evidence of significant reduction in the deuterium enrichment of aromatic species relevant to interstellar processes, proto‐planetary disk chemistry, and to determining the origin of the meteoritic insoluble organic matter. The experimental approach developed in this work opens new perspectives for systematic and nondestructive analysis at the molecular level of meteoritic insoluble organic matter even with a very small amount of sample from some particularly rare chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号