首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   14篇
  国内免费   13篇
测绘学   9篇
大气科学   13篇
地球物理   83篇
地质学   137篇
海洋学   21篇
天文学   46篇
综合类   3篇
自然地理   19篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   12篇
  2017年   11篇
  2016年   17篇
  2015年   9篇
  2014年   17篇
  2013年   16篇
  2012年   21篇
  2011年   16篇
  2010年   14篇
  2009年   21篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1982年   6篇
  1981年   5篇
  1980年   2篇
  1978年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1965年   3篇
  1964年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有331条查询结果,搜索用时 46 毫秒
1.
In downhole microseismic monitoring, accurate event location relies on the accuracy of the velocity model. The model can be estimated along with event locations. Anisotropic models are important to get accurate event locations. Taking anisotropy into account makes it possible to use additional data – two S-wave arrivals generated due to shear-wave splitting. However, anisotropic ray tracing requires iterative procedures for computing group velocities, which may become unstable around caustics. As a result, anisotropic kinematic inversion may become time consuming. In this paper, we explore the idea of using simplified ray tracing to locate events and estimate medium parameters. In the simplified ray-tracing algorithm, the group velocity is assumed to be equal to phase velocity in both magnitude and direction. This assumption makes the ray-tracing algorithm five times faster compared to ray tracing based on exact equations. We present a set of tests showing that given perforation-shot data, one can use inversion based on simplified ray-tracing even for moderate-to-strong anisotropic models. When there are no perforation shots, event-location errors may become too large for moderately anisotropic media.  相似文献   
2.
In laboratory experiments, the influence of inflow and outflow sequences on the behavior of fine sedi-ment was investigated. The experimental set-up consisted of two interconnected rectangular basins, between which water was moved back and forth. Suspended sediment concentration in the main basin as well as the sediment exchange rates were derived from turbidity measurements.The suspended sediment ratio, SSR, and sediment exchange rates (influx sediment rate, ISR, and evacuated sediment rate, ESR) were measured. In twenty test runs, a parametric study on the magnitude and frequency of inflow and outflow cycles, the relative duration between inflow and outflow sequences, the initial sediment concentration, and the intake position was done. An initial test with stagnant water described the set-tling behavior of fine sediment and served as a reference scenario.The test results show that settling of fine particles near the intake/outlet structure can be considerably reduced by the nature of the inflow and outflow sequences. High cycle magnitude and frequency lead to maximum suspended sediment ratio in the system. For low discharges, the evolution of suspended sediment concentration cannot be directly correlated to the inflow and outflow cycles. However, compared to"no operation"conditions, the suspended sediment ratio could be increased by 10%to 40%locally. For high discharge, the evolution of suspended sediment concentration correlated with discharge cycles and suspended sediment ratios between 50%and 80%higher than for stagnant water could be achieved. Similar ratios could be obtained when the intake is located closer to the bottom or to the free water surface.Meanwhile, the overall sediment balance remained in equilibrium over the test period, indicating that the influx and evacuated sediment rates are not significantly influenced by the inflow and outflow cycles.  相似文献   
3.
Isotopic and chemical composition of groundwater from wells and springs, and surface water from the basalt-dominated Axum area (northern Ethiopia) provides evidence for the origin of water and dissolved species. Shallow (depth < 40 m) and deep groundwater are distinguished by both chemical and isotopic composition. Deep groundwater is significantly enriched in dissolved inorganic carbon up to 40 mmol l−1 and in concentrations of Ca2+, Mg2+, Na+ and Si(OH)4 compared to the shallow type.The δ2H and δ18O values of all solutions clearly indicate meteoric origin. Shifts from the local meteoric water line are attributed to evaporation of surface and spring water, and to strong water–rock interaction. The δ13CDIC values of shallow groundwater between −12 and −7‰ (VPDB) display the uptake of CO2 from local soil horizons, whereas δ13CDIC of deep groundwater ranges from −5 to +1‰. Considering open system conditions with respect to gaseous CO2, δ13CDIC = +1‰ of the deep groundwater with highest PCO2 = 10−0.9 atm yields δ13CCO2(gas) ≈ −5‰, which is close to the stable carbon isotopic composition of magmatic CO2. Accordingly, stable carbon isotope ratios within the above range are referred to individual proportions of CO2 from soil and magmatic origin. The uptake of magmatic CO2 results in elevated cations and Si(OH)4 concentrations. Weathering of local basalts is documented by 87Sr/86Sr ratios of the groundwater from 0.7038 to 0.7059. Highest values indicate Sr release from the basement rocks. Besides weathering of silicates, neoformation of solids has to be considered, which results in the formation of, e.g., kaolinite and montmorillonite. In several solutions supersaturation with respect to calcite is reached by outgassing of CO2 from the solution leading to secondary calcite formation.  相似文献   
4.
5.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   
6.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   
7.
Initiated by the need to quantify erosion rates and the impacts of global changes on erosion, several attempts have been made to apply erosion models at regional scales. However, these models have often been directed towards on-site soil erosion estimates, emphasising sheet and rill erosion processes, and disregarding gully erosion, channel erosion and sediment transport. These models are therefore of limited use for the assessment of sediment yield, off-site impacts of erosion, and for the development of environmental management to control these impacts at regional scale. This study analyses and compares three spatially distributed models for the prediction of soil erosion and/or sediment yield at regional scales: the WATEM-SEDEM model that is based on the empirical Revised Universal Soil Loss Equation (RUSLE) in combination with a sediment transport equation, the physics-based Pan European Soil Erosion Risk Assessment model (PESERA), and a newly developed Spatially Distributed Scoring model (SPADS). The three models were applied to 61 Spanish drainage basins and model predictions were evaluated against data on measured reservoir sedimentation rates. Global data sets on land use, climate, elevation and soil characteristics were used as model input for WATEM-SEDEM and SPADS, whereas published soil erosion estimates of PESERA at 1 km2 resolution were used directly. SPADS and WATEM-SEDEM provided best results after separate calibration for basins with a Sediment Delivery Ratio (SDR) higher than 5% and those with an SDR lower than 5%. In this way, SPADS explained 67% of variation in sediment yield, while WATEM-SEDEM explained 48% of the variation. PESERA represents a promising alternative to the use of empirical models at the regional scale as it can be applied to very diverse environments with little calibration. However, PESERA provides soil erosion rates and not sediment yield estimates. For most basins PESERA soil erosion rates vary between fifty and close to zero percent of total sediment yield. Two major factors may explain this discrepancy between modelled soil erosion rates and measured sediment yield. First, it may be that PESERA underestimates soil erosion under Mediterranean conditions, although PESERA soil erosion rates are of the same order of magnitude as erosion rates measured in erosion plot studies. Second, gully-, river channel erosion and sediment transport processes may be much more important than sheet- and rill erosion for regional scale sediment yield in these environments. These issues therefore require further attention in future model development. Although spatially lumped models provide better predictions of sediment yield at the basin scale, and while validation of the predicted spatial patterns of sources and sinks of sediment requires further research, spatially distributed models are expected to be of value to support management decisions regarding the assessment of on-site and off-site impacts of erosion at the regional scale.  相似文献   
8.
We introduce a new method for prestack depth migration of seismic common-shot gathers. The computational procedure follows standard steps of the reverse-time migration, i.e., downward continuation of the source and the receiver wavefields, followed by application of an imaging condition (e.g. zero-lag cross-correlation of these fields). In our method we first find a sparse data representation with a small number of Gaussian wave packets. We then approximate the downward wavefield propagation (for the source and the receiver fields) by a rigid flow of these wave packets along seismic rays. In this case, the wave packets are simply translated and rotated according to the ray geometry. One advantage of using Gaussian wave packets is that analytic formulas can be used for translation, rotation, and the application of the cross-correlation imaging condition. Moreover, they allow more sparse representations than competing methods. Finally we formulate a computationally and memory efficient migration procedure, as only few rays have to be traced, and since it is cheap to compute the cross-correlation for the intersecting rays.  相似文献   
9.
Single-crystal elasticity of stishovite was examined using a new experimental technique and an empirical macroscopic model. Employing high-frequency resonant ultrasound spectroscopy, single-crystal elastic constants of stishovite were determined: C11 = 443(3), C33 = 781(4), C12 = 193(2), C23 = 199(2), C44 = 256(2), and C33 = 316(2) GPa. The frequency range of the resonant ultrasound spectroscopy techniques was 6–20 MHz, which is much lower than the ~10 GHz range of the Brillouin scattering technique. Of the elastic constants, the shear elastic constants C44 and C66 are consistent with the average value of the previously mentioned Brillouin scattering. Conversely, the four elastic constants, C11, C33, C12, and C23, slightly deviate outside the range of previous Brillouin scattering results. The present results, except those for C12, are consistent with recent lattice dynamic analysis of inelastic X-ray scattering data. The adiabatic bulk modulus was calculated as 298 GPa, which is smaller and more consistent with the result of compression experiments than any other Brillouin scattering results (301–312 GPa). The present result shows greater P-wave velocity anisotropy (24.7%) than any preceding work. To understand the unique elastic properties of stishovite, the Gingham check model was proposed and examined. The result shows that the octahedron of 6-coordinated Si in stishovite crystal has stiffness comparable to that of diamond.  相似文献   
10.
Fractal analysis of magnetic records (1 Hz sampling rate) of 5 stations (Guam, Moshiri, Paratunka, Magadan, and Chokurdakh) located along the 210 magnetic meridian (210 MM) has been performed using the Higuchi method. The period of 22 months (October 1992 to July 1994) that embodies the date of the strong Guam earthquake of 8 August1993 has been considered. A comparison of the ULF emissions scaling parameters (spectral exponents β and fractal dimensions D) obtained at different latitudes has been made. Dependence of β and D on the Kp index of geomagnetic activity has been analyzed for each of the 24 local time intervals. It is revealed that D decreases ( β increases) with increasing geomagnetic activity at all stations, but the rates of decrease (increase) are different at different stations and in different time intervals. It is shown that the evening, night and early morning hours are preferable to study magnetospheric effects, whereas the noon hours are the most suitable for the analysis of lithospheric effects. A possibility of using the data of the 210 MM stations as reference materials for the Guam seismically active area is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号