首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   8篇
  国内免费   5篇
测绘学   7篇
大气科学   16篇
地球物理   50篇
地质学   82篇
海洋学   30篇
天文学   14篇
自然地理   8篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   4篇
  2011年   14篇
  2010年   8篇
  2009年   14篇
  2008年   14篇
  2007年   15篇
  2006年   5篇
  2005年   7篇
  2004年   11篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
排序方式: 共有207条查询结果,搜索用时 15 毫秒
1.
G. Herman  M. Podolak 《Icarus》1985,61(2):252-266
A one-dimensional simulation of pure water-ice cometary nuclei is presented, and the effect of the nucleus as a heat reservoir is considered. The phase transition from amorphous to crystalline ice is studied for two cases: (1) where the released latent heat goes entirely into heating adjacent layers and (2) where the released latent heat goes entirely into sublimation. For a Halley-like orbit it was found that for case 1 the phase boundary penetrates about 15 m on the first orbit and does not advance until sublimation brings the surface to some 10 m from the phase boundary. For case 2 the phase boundary penetrates about 1 m below the surface and remains at this depth as the surface sublimates. For an orbit like that of Schwassmann-Wachmann 1 the phase boundary penetrates about 50 m initially for case 1 and about 1 m for case 2. There is no further transformation until the entire comet is heated slowly to near the transition temperature, after which the entire nucleus is converted to crystalline ice. For an Encke-type orbit case 1 gives a nearly continuous transition of the entire nucleus to crystalline ice, while for case 2 the initial penetration is about 8 m and remains at this depth relative to the surface as sublimation decreases the cometary radius. Thus the entire comet is converted to crystalline ice just before it is completely dissipated.  相似文献   
2.
M. Podolak  G. Herman 《Icarus》1985,61(2):267-277
The insulating effect of an evolving dust mantle is examined. The role of this mantle in determining the surface temperature of the ice core is studied as a function of the mass fraction of the dust in the ice-dust mixture and the thermal conductivity of the nucleus. Using the so-called “looselattice” model of D.A. Mendis and G.D. Brin (1977, Moon17, 359–372) (which was also extended to include cracks and pores in the mantle), it was found that both high dust to ice ratios and high core conductivities inhibit mantle blowoff. Indeed, it is often possible to build an essentially permanent dust mantle around an ice nucleus, so that the nucleus will take on an asteroidal appearance.  相似文献   
3.
4.
5.
6.
7.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   
8.
9.
Groundwater that bypasses the riparian zone by travelling along deep flow paths may deliver high concentrations of fertilizer‐derived NO3? to streams, or it may be impacted by the NO3? removal process of denitrification in streambed sediments. In a study of a small agricultural catchment on the Atlantic coastal plain of Virginia's eastern shore, we used seepage meters deployed in the streambed to measure specific discharge of groundwater and its solute concentrations for various locations and dates. We used values of Cl? concentration to discriminate between bypass water recharged distal to the stream and that contained high NO3? but low Cl? concentrations and riparian‐influenced water recharged proximal to the stream that contained low NO3? and high Cl? concentrations. The travel time required for bypass water to transit the 30‐cm‐thick, microbially active denitrifying zone in the streambed determined the extent of NO3? removal, and hydraulic conductivity determined travel time through the streambed sediments. At all travel times greater than 2 days, NO3? removal was virtually complete. Comparison of the timescales for reaction and transport through the streambed sediments in this system confirmed that the predominant control on nitrate flux was travel time rather than denitrification rate coefficients. We conclude that extensive denitrification can occur in groundwater that bypasses the riparian zone, but a residence time in biologically active streambed sediments sufficient to remove a large fraction of the NO3? is only achieved in relatively low‐conductivity porous media. Instead of viewing them as separate, the streambed and riparian zone should be considered an integrated NO3? removal unit. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号