排序方式: 共有121条查询结果,搜索用时 31 毫秒
1.
总结了"十五"攻关课题有关中国温度变化研究的若干进展.在资料质量控制和序列非均一性检验及订正的基础上,更新了中国地面近50年、100年和1 000年气温序列.研究表明,不论是近54年还是近100年全国年平均地面气温升高趋势一般比原来分析结果表明的要强,分别达到0.25℃/10 a和0.08℃/10 a.中国现代增暖最明显的地区包括东北、华北、西北和青藏高原北部,最显著的季节在冬季和春季.近50多年中国近地面气候变暖主要是平均最低气温明显上升的结果,全国范围内极端最低气温也显著升高,而极端最高气温升高不多.中国与温度相关的极端气候事件强度和频率一般呈降低趋势或稳定态势.研究发现,城市化因素对中国地面平均气温记录具有显著影响,但在现有的全国和区域平均温度变化分析中一般没有考虑,因此需要在将来的研究中给予密切关注.在增温明显的华北地区,1961~2000年间城市化引起的年平均气温增加值达到0.44℃,占全部增温的38%,城市化引起的增温速率为0.11℃/10 a.中国其他地区的增温趋势中也或多或少反映出增强的城市热岛效应影响.20世纪60年代初以来中国对流层中下层温度变化趋势不明显,仅为0.05℃/10 a,比地面气温变化小一个量级;对流层上层和平流层底层年平均温度呈明显下降趋势,变化速率分别为-0.17℃/10 a和-0.22℃/10 a;整个对流层平均温度呈微弱下降趋势.中国对流层温度与地面气温变化趋势存在明显的差异,但这种差异在20世纪80年代初以后趋于减小.近千年来中国地面气温变化史上可能确存在"中世纪温暖期"和"小冰期"等特征性气候阶段,但"中世纪温暖期"的温暖程度似乎没有过去认为的那样明显.从全国范围看,11世纪末和13世纪中的温暖程度可能均超过了20世纪30~40年代暖期,表明20世纪的增暖可能并非史无前例.中国20世纪气候增暖的原因目前还不能给出明确回答.一些迹象表明,人类活动可能已经对中国的地面气温变化产生了影响,但太阳活动及气候系统内部的低频振动对现代气候变暖可能也具有重要影响. 相似文献
2.
3.
1986年以来,长江流域的极端强降水出现了显著增加的趋势,突出表现在中下游地区。长江中下游地区极端降水量的增加,既是极端降水强度增强,也是极端降水事件显著增加的结果。长江流域极端降水变化主要发生在东南部和西南部。趋势分析表明,自20世纪80年代中期以来,长江流域上游极端降水事件峰值提前到6月份出现,与长江中下游极端降水峰值出现的时间几乎同步,这必将加大遭遇性洪水发生的机率。20世纪90年代以来长江洪水的频繁发生,与长江流域极端降水时空分布的变化密切相关。 相似文献
4.
5.
6.
计算湖北省71个气象站1961~2000年间四季、年平均、最低、最高气温倾向率,绘制其等值线分布图,设计并求取武汉站相对郊区代表站、全省的城市代表站、基本和基准站相对乡村代表站的热岛增温速率和贡献率.结果表明:1)40年来气温倾向率多为正,即呈增温趋势,但时空分布不均,冬季最低气温增速大,夏季最高气温增速小甚至降温,非对称性变化明显,几乎所有情况后20年增温加剧;2)武汉站、全省城市代表站热岛效应影响存在着显著的随时间增大趋势,武汉年平均、最低、最高气温的热岛增温速率分别为0.2、0.37、0℃/10 a,贡献率分别为64.5%、67.3%、0%,而全省城市代表站年3项气温的热岛增温速率略小,贡献率则可达75%以上,有些情况可达100%,且时间差异、非对称性特征与武汉较一致;3)近40年来全省基本和基准站热岛增温贡献率可达60%以上,近20年来还有50%左右.因此,目前根据国家基本、基准站资料建立的温度序列严重地保留着城市化影响. 相似文献
7.
8.
利用武汉市区气象站及其周边4个县气象站1960-2005年的气温资料,计算了46 a及分时段的季节和年平均气温、平均最高和最低气温倾向率,城市热岛强度倾向率及其贡献率。结果表明:46 a来,城区和郊区的平均气温均以上升趋势为主,最低气温增幅最大,最高气温增幅最小,甚至下降;冬季增幅最快,夏季增幅最慢,甚至下降,这是第一类非对称性。 城市热岛效应也存在增强趋势,以年平均、最低和最高气温表示的城市热岛强度倾向率分别为0.235℃/10 a、0.425℃/10 a和0.034℃/10 a,热岛效应贡献率分别达到60.4%、67.7%和21.8%,这是第二类非对称性。 46 a来的增温和城市热岛强度加强主要是最近23 a快速增温所致,进入本世纪增温进一步加剧。
摘要 计算了武汉市气象站、周边4县气象站平均的1960~2005年间以及前后两半时段四季和年平均、最高、最低气温倾向率,城市热岛强度倾向率和贡献率。结果表明:1)46年来,城区和郊区的平均气温均以增趋势为主,平均气温倾向率为正,最低气温增幅最大,最高气温增幅最小甚至下降,冬季增幅最快,夏季增幅最慢甚至下降,这是第一类非对称性;2)城市热岛效应也存在增趋势,以年平均、最低、最高气温表示的城市热岛强度倾向率分别为0.235、0.425、0.034 ℃/10a,热岛效应贡献率分别达到60.4%、67.7%、21.8%,这是第二类非对称性,3)46年来的增温和城市热岛强度加强主要是后23年快速增温所致,前23年气温变化不明显。武汉市气象站气温资料严重地保留着城市化影响,建议尽快迁站。
关键词 城市热岛强度 最高气温 最低气温 非对称性变化 相似文献
9.
根据ECHAM5/ MPI-OM模式对长江流域21世纪前半叶气候变化的预估数据,分析了全流域、上游地区和中下游地区未来气候变化趋势。结果表明,长江流域气温将持续升高,尤其7-8月升温趋势明显,年平均温度升高最大幅度为2.60℃;全流域7月降水将增加,8月降水有减少趋势,未来夏季降水更加集中,不仅会增加洪涝灾害的发生机率,也有可能导致旱灾的发生。 相似文献
10.
用SVD方法分析了1、4、7月全球OLR与夏季(6—8月)中国华中区域降水场的关系,结果表明:若1月南非东部沿岸至西印度洋、北美北部OLR(Outgoing Longwave Radiation)偏低(偏高),或北非、美国西南沿岸及近海OLR偏高(偏低),则夏季长江中游降水将偏多(偏少)。若4月澳大利亚至东印度洋、日界线以东热带太平洋OLR偏低(偏高),或西北太平洋偏高(偏低),则夏季长江中游降水将偏多(偏少)。若7月东印度洋—澳大利亚大陆、东亚OLR偏低(偏高),则夏季华中区域长江及其以北降水将偏多(偏少),湖南和江西南部降水将偏少(偏多)。夏季长江中游旱、涝年前期OLR明显的区别在于热带太平洋:涝年1月东、西太平洋为明显负、正异常,4月这种异常进一步加剧;旱年1月正好相反,东、西太平洋为微弱的正、负异常,4月转为东、西太平洋为微弱的负、正异常。太平洋暖池OLR低值区(强对流区)4、7月持续偏南,是夏季长江中游降水偏多的另一重要信号。冬、春季OLR与夏季长江中游降水大尺度关联的可能机制为:若1月热带东、西太平洋OLR为明显负、正异常,4月这种异常进一步加剧,也即冬、春季热带太平洋Walker环流持续减弱,从而使夏季暖池对流活动减弱,热带辐合带偏南,Hadley环流偏弱,使夏季西太平洋副热带高压主体位置偏南,导致中国夏季主雨带不能北推至黄河流域,而长期滞留长江中下游,最后造成长江中游降水异常。 相似文献