首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
  国内免费   22篇
大气科学   27篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   8篇
  2004年   3篇
  2000年   1篇
  1999年   1篇
排序方式: 共有27条查询结果,搜索用时 24 毫秒
1.
非洲地形对印度夏季风影响的数值试验   总被引:1,自引:0,他引:1  
利用IAP9L AGCM模式对印度夏季风风场进行了数值模拟,基本上模拟出了印度夏季风系统中各风系分布;在此基础上,通过改变模式中非洲大陆的地形高度,设计了一组地形敏感性试验,对比了敏感性试验和控制试验的结果,分析非洲地形高度对印度夏季风的影响。结果表明,非洲地形高度升高使得阿拉伯海热带区域、南印度洋副热带区域和非洲大陆东南部在低层分别出现异常反气旋、气旋和反气旋环流,这些异常环流使非洲大陆东岸的越赤道气流增强,阿拉伯海热带地区的西风气流增强;地形升高也会使印度半岛区域低层水汽通量辐合增强,整层垂直上升速度加强,降水增加,故非洲地形升高最终导致了印度夏季风增强;而非洲地形高度降低,则情况相反,这充分说明了非洲大陆地形是印度夏季风形成的关键因子。  相似文献   
2.
将流的标准化变差度概念应用到各年南海夏季风建立研究中去,并用其作为大气环流调整的客观定量指标。用该指标定义的南海夏季风建立的预兆日期与用传统天气气候学方法确定的南海夏季风的来临日期,在绝大多数具体年份两者均很接近,故可作南海夏季风建立的先兆指标。但有一些年份,南海季风的建立不伴随着低空环流的突变过程,两种方法都可能不准确,可靠的方法也许是用场相似度作指标。此外,南海夏季风建立前,对流层顶和平流层下层就出现了环流调整,该调整为南海夏季风建立打下基础,而南海夏季风爆发则表现为低空环流的大调整。南海夏季风的爆发是高、低空全球大气环流发生显著调整的结果,并非限于南海范围局部,南海夏季风建立不能看作是发生在南海的局部现象。  相似文献   
3.
利用中科院大气物理研究所的两层大气环流模式(IAP—GCMⅡ)作了南海海表水温月异常时500hPa气温响应场传播路径的数值试验。结果表明:当南海表面水温出现正异常时该气温响应场分为南北两支传播;北支沿逆时针路径向北传播,由南海经我国东南部到达青藏高原,南支则向南传播;而当负异常时,则该响应场有顺时针的传播路径,由南海经泰国湾最后也到达青藏高原。  相似文献   
4.
设计了IAP (InstituteofAtmosphericPhysics,ChineseAcademyofSciences)AGCM III,对其动力框架作说明和检验 ,时间积分采用改进的非线性迭代法。用Rossby Haurwitz波对框架进行了波型检验、能量检验和波速检验。结果表明 ,非线性迭代 3次的时间积分方案具有较好的稳定性 ,能够有效地抑制短波 ,同时对长波的歪曲较小 ,且时间积分步长可放得较大 ;该框架能够较长时间地保持Rossby Haurwitz 4波波型 ,在积分过程中能够较高精度地保持总有效能量守恒 ;模式计算的Rossby Haurwitz波速为每天西传 1 5个经度 ,这与理伦值很接近。  相似文献   
5.
全球季风系统的稳定性与年代际变化   总被引:1,自引:0,他引:1  
采用1948~2004年共57年NCEP再分析逐日风场资料,分3个气候时段对全球季风系统的稳定性与年代际变化作了初步研究.发现全球季风系统的地理分布和斜压结构具有很好的稳定性,但强度存在明显的年代际变化.季风的年代际变化以强度的局域振荡和持续加强或减弱为主要形式,不具有传播性.不同高度季风年代际变化的敏感区不同,在对流层低层主要的年代际变化位于北半球中的东半球;而在对流层高层则位于西半球热带地区;在平流层则在环球的两个纬带(20~40°N和赤道带).  相似文献   
6.
计算了各年南海夏季风建立前后流场的场相似度、场比幅、季风分量动能强度指数和突变度.指出按变差度最大或相似度绝对值最小及其变化最陡以及比幅最小,可客观定量地定出季风来临的预兆日期,在大多年份该日期比用天气气候学方法得到的季风来临(爆发)日期要早些,且两者有较好正相关.绝大多数年份季风建立时有环流突变发生,但也有少数年份呈调和变化或二次突变.季风分量动能强度指数能够反映各年南海夏季风建立后的强度.最后分析指出,南海850hPa夏季风的前兆日期,突变度和强度指数都有明显的年际和年代际变化.  相似文献   
7.
将曾庆存等提出的大气环流的季节划分和计算季风的理论方法作了改进,使之更便于研究季风的建立过程.该理论方法将环流突变和季风建立时段,其"变差度"和与其前和其后场的"相似度"等由空间场的泛函随时间的变化(即数学名词上的"流"[flow])一起求出来.研究Ⅰ先分析气候平均场,Ⅱ分析各个别年份的情况及年际变化.研究Ⅰ的结果表明:(1)该方法可以客观定量地定出"突变"时段的关键日期;与季风建立过程联系,即是季风建立的"预兆日期",它比人们用天气-气候学方法(甚至用别的气象要素)定出的可以明显感觉到的或有明显实用价值的"季风来临日期"要早2至4天.(2)在北半球亚澳季风系统区域,夏季风的来临在许多关键地区伴有明显的环流突变,建立和推进者很快,但也有许多区域不表现为当地环流的突变,推进速度也慢.(3)北半球亚澳季风系统低空的热带季风分支,在6月中以前可明确区分为3个子系统,(a)西太平洋暖池和邻近低纬区域,4月中下旬建立;(b)热带东北印度洋(北界与孟加拉湾相邻,但不包括其在内)及索马里东边海洋,4月末至5月初建立;和(c)南海区域,5月上旬从南到5月下旬到北部.南海夏季风向北推进最快,于5月末候即可达北回归线附近,然后与暖池西北区域风场的突变一起,于6月中旬影响到东亚30°N区域;印度洋季风于6月初到达印度半岛东南端,然后逐渐推向印-巴次大陆.7月中以后,热带季风才连成一片,由非洲东岸直至长江下游和菲律宾附近.副热带季风分支于6月中旬可以感到其影响,于7、8月盛行于东亚和西太平洋区域,且结构和演变都比较复杂;6~7月间只表现为在(5~20°N,120~150°E)区域有强的环流突变(与副高增强并北移对应),7月中至8月底,则在上述区域和沿30°N的长江下游和日本以南的洋面上有3个强的环流突变中心(对应于副高又一次增强北移和西伸).这里暂不讨论温寒带季风分支.(4)季风具有鲜明的三度空间斜压结构,尤其是在低空季风"爆发"之前,平流层早已有强的环流突变,季节调整完成,然后突变向下延伸(虽然强度大减),跟着就有当地的低空季风"爆发"(建立).平流层和对流层环流的相互作用及其与季风建立的关系很值得进一步研究.  相似文献   
8.
对1998年南京降水分别设计并开展了求和自回归滑动平均(Auto-Regressive Integrated Moving Average,ARIMA)模型预测、经验模态分解(Empirical Mode Decomposition,EMD)预测和基于Hilbert变换(HilbertTransformation,HT)的幅频分离预测等3种跨季节统计预测试验。结果表明:ARIMA模型预测结果存在明显的系统性误差且对夏季的降水突变现象预测困难;EMD分解预测的结果虽在降水演变趋势上有明显提高,但仍未能预测出夏季的强降水突变现象,究其原因可能是对高频分量预测效果不好所致;而基于Hilbert变换的幅频分离预测方法能够对各模态分量的瞬时频率和瞬时振幅实施隔离预测,消除两者的相互影响,显著改善高频模态的预测效果,使得最终预测结果最为理想,不仅具有最高的趋势相关性和最小的偏差,而且还较好地预测出了夏季两次强降水过程。不仅如此,在对2003年的降水预测验证中,基于Hilbert变换的幅频分离预测方法同样具有最好的预测效果,表明该方法预测效果较为稳定,为改进跨季节短期气候统计预测技术提供了一个新思路。  相似文献   
9.
从气候波动的瞬时频率与瞬时振幅出发,结合最小二乘支持向量机技术,提出了基于幅频分离技术的气候时间序列预测方法,并对南京地区降水距平进行了30候的预测试验。结果表明,幅频分离预测法能够对所有模态的振幅和高频模态的瞬时频率进行较好的预测,而预测的瞬时频率累积误差会对模态分量的预测距平相关性产生敏感影响,该新方法能够显著提高气候序列高频模态的预测效果。对于气候序列的低频模态分量,集合经验模态分解的边界效应会对瞬时频率的求解产生较大误差,使得序列边界区的幅角计算不准确,导致对低频模态的最终预测效果不理想。对气候序列的高频分量采用幅频分离并进行最小二乘支持向量机预测,而对其低频分量仅采用最小二乘支持向量机进行直接预测,可同时提高高、低频分量的预测效果,并最终提高整个气候序列的预测准确性。该分频预测方法可以使南京降水预测的30候距平相关保持在0.4以上。  相似文献   
10.
In view of the SSTA study mostly confined to summer, this work tries to take another look from the point of winter. Using a two-layer general circulation model (IAP-GCM Ⅱ)developed at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, numerical experiments are conducted to study the transmission paths of the 500-hPa response field of temperature in association with monthly winter anomalies of SST for the South China Sea. The result shows that the response field splits into two branches in transmission when the anomaly is positive-one travels counterclockwise to the north arriving in the Qinghai-Xizang (Tibetan) Plateau via southeastern China after leaving the sea and the other goes southwards; the transmission becomes clockwise when anomaly turns negative so that it starts from the sea and passes the Bay of Thailand before, as in the case of positive anomaly, reaching the plateau. Our work has shown that the South China Sea SST is essential for the prediction of short-term climate in southeast China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号