首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地质学   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
应用WRF—Chem(Weather Research and Forecasting Model with Chemistry)模式模拟研究了2007年8月京津冀地区近地面O3、NO2、PM2.5浓度的时空变化特征,将模拟结果与观测数据进行详细对比,结果表明,模式可以较好地模拟O3、PM2.5,浓度的空间分布和时间变化特征,成功再现了8月33和PM2.5的几次积累增加过程,其中O,的模拟值与观测值的相关系数为0.69~0.86,PM2.5的相关系数为0.44~0.49,但模式对NO2的模拟相对较差,相关系数为0.27~0.43。北京、天津地区为O3月均低值区,月均体积浓度约30×10^-9,渤海及京津冀以西地区O3月平均体积浓度可达60×10^-9;PM2,呈现南高北低的分布特征,变化范围为120~240μg/m3。14时月平均03体积浓度在北京、天津地区低于周边地区,约为60×10^-9;而PM2.5质量浓度在环渤海地区和河北南部较高,为100~120μg/m^3。8月17日北京出现一次典型的高浓度O,污染事件,14时北京地区温度达到33℃,O3体积浓度为80×10^-9~110×10^-9。在局地排放、化学反应和外来输送的共同作用下,渤海西岸和北岸PM2.5的质量浓度超过120μg/m3,其中二次气溶胶质量浓度为50~100μg/m3,一次排放人为气溶胶质量浓度为10~20μg/m3,海盐质量浓度为1~7μg/m3,二次气溶胶是该地区PM2.5的主要贡献者。  相似文献   
2.
本文从实验气溶胶样品、实验技术和分析方法三个方面对以往的实验室研究结果进行综合分析, 归纳总结出适合东亚地区沙尘气溶胶的非均相吸附系数γ的参考值, 并利用区域大气化学模式, 模拟研究了非均相吸附系数γ的不确定性对东亚地区沙尘气溶胶非均相化学过程的影响。为了研究非均相反应对γ的敏感性, 针对其中四种物质(HNO3、N2O5、O3和SO2) 的γ上限值和下限值, 分别进行了T-up (上限值) 和T-low(下限值)两个敏感实验; 针对相对湿度对HNO3和N2O5非均相吸附系数的影响进行了T-rh敏感实验。模拟结果与观测资料进行了对比分析, 结果表明模式可以比较好地反映气态物质、气溶胶浓度的演变过程和非均相反应过程。考虑非均相反应后模拟的硫酸盐和硝酸盐浓度与观测值更接近一些。采用γ参考值的模拟结果总体上比采用γ上限值和γ下限值更合理, 把γ系数作为相对湿度的函数来处理比作为常数处理更合理。沙尘气溶胶通过非均相化学反应, 可以使模拟区域内SO2、NOx和O3的平均浓度下降, 使硫酸盐和硝酸盐颗粒物浓度增加, 采用γ参考值计算得到3 km以下的上述物质的变化率分别为-3.44%、-5.92%、-1.75%、5.22%和23.25%, 显示沙尘表面非均相化学反应对大气化学成分特别是气溶胶有较大的影响; 不同γ取值对上述物质变化率有一定影响, 其中对硝酸盐和臭氧的影响较大, T-up和T-low 模拟结果之间可以相差13.4%和10.1%。  相似文献   
3.
李嘉伟  韩志伟 《遥感学报》2016,20(2):205-215
气候模式对气溶胶光学厚度AOD的合理模拟,是模拟研究气溶胶气候效应的前提。利用在线耦合的区域气候—大气化学—气溶胶耦合模式系统RIEMS-Chem,模拟研究了2010年中国东部地区AOD的季节变化情况。模拟结果与卫星搭载的中分辨率成像光谱仪(MODIS)的反演资料和地基气溶胶观测网(AERONET)的站点观测资料分别进行了一年四季的详细对比,检验结果显示尽管模拟值有所低估,模式仍然能够合理地反映AOD的季节变化情况和空间分布特征,与AERONET站点观测值相比,整体相关系数为0.6。MODIS反演和相应模拟结果均显示,中国东部地区AOD整体水平夏季最大,春季次之,秋、冬季最小,华北平原、四川盆地和华中地区是AOD的主要大值区。只考虑日间AOD时,其季节分布特征略有不同,在华北平原地区,日间AOD夏季最大(1.1—1.5),在长江中下游流域地区,日间AOD则在春季最大(1.1—1.7);在中国东部,日间AOD的大值在夏、冬两季分别主要分布在长江以北、以南地区,而在春、秋两季则主要位于长江中下游流域。  相似文献   
4.
利用气象模式WRF驱动区域空气质量模式RAQMS,模拟研究了2014年北京地区春季颗粒物及气溶胶化学组分的时空变化,对比分析了沙尘期(3月17日、29日)和霾期(3月25~27日)的天气形势、气象要素和气溶胶化学组分特征,比较了沙尘和人为气溶胶表面非均相化学反应对大气化学成分的影响及相对贡献。结果显示,模式对于气象要素、PM2.5、PM10及其化学组分具有较好的模拟能力,考虑了气溶胶表面非均相化学反应后明显提高了模式对PM2.5及气溶胶化学组分模拟的准确性。沙尘期间,沙尘对PM10质量浓度贡献占主导地位(50.7%),对PM2.5的贡献与有机气溶胶(OM)和人为排放的一次颗粒物(PPM)相当;霾期间,硝酸盐NO3?(25.6%)和OM(23.6%)对PM2.5的贡献最大,在PM10中NO3?、PPM和OM的贡献相当。沙尘期,粗粒子明显增加,在PM10中所占比例与细粒子相当,为45.5%;霾期,细粒子占主导地位,占PM10质量浓度的85.6%。非均相化学反应使沙尘期间硫酸盐(SO42–)和NO3–浓度分别增加16.9%和83.8%,使霾期间的SO42?和NO3–浓度分别增加14.5%和45.0%。2014年3月,非均相化学反应使北京月均SO2、NO2、O3、SO42?、NH4+和NO3?的浓度分别变化了?2.5%、?5.7%、?3.4%、11.7%、18.6%和58.5%,本文结果表明非均相化学反应对二次无机气溶胶的生成有重要贡献。  相似文献   
5.
北京冬季雾霾事件的气象特征分析   总被引:4,自引:3,他引:1  
利用观测的气象要素和细颗粒物(即PM2.5)浓度资料,并结合中尺度数值天气模式WRF(Weather Research and Forecasting Model),对2013年1月北京地区雾霾污染期间天气条件和边界层气象特征进行了分析。模拟与观测对比表明,WRF模式可以较好地反映北京—天津—河北地区地面和高空主要气象要素的时空分布。对1月10~14日、27~31日两次重雾霾天气的分析表明,雾霾的形成是高浓度的大气颗粒物和特殊的气象条件共同作用的结果。小风或静风、稳定的大气层结,使大气扩散能力减弱,造成污染物堆积,偏南气流将周边污染物和水汽输送到北京,不仅增加了污染物浓度,而且有利于气溶胶吸湿增长,消光增强,使能见度下降,进而形成雾霾。  相似文献   
6.
准噶尔-巴尔喀什洋的闭合时限对中亚造山带西南部构造演化具有重要意义,前人对此问题的研究多基于西准噶尔中部晚古生代岩浆岩,很少从同期火山-沉积地层的角度进行约束。本文试图从西准噶尔中部加依尔山新识别出的晚石炭世角度不整合入手,为准噶尔-巴尔喀什洋的闭合时限提供火山-沉积地层方面的新证据。锆石U-Pb年代学结果显示,不整合界面下部太勒古拉组粉砂岩的最大沉积年龄为360±7 Ma,上部哈尔加乌组火山角砾岩的喷发年龄为292±2 Ma。结合已有资料,限定两组的形成时代分别为早石炭世杜内期和早二叠世阿瑟尔期-萨克马尔期。在西准噶尔中-南部地区,哈尔加乌组发育植物化石和火山岩柱状节理,为典型的陆相火山-沉积建造,多角度不整合超覆在早期海相火山-沉积地层之上。这一区域性角度不整合记录了西准噶尔中部晚石炭世遭受的抬升剥蚀以及沉积环境由海相到陆相的转变,表明准噶尔-巴尔喀什洋可能在早二叠世已经闭合。除此之外,全岩主量、微量元素地球化学和锆石Hf同位素分析表明,研究区侵入不整合界面的花岗斑岩(286±4Ma)和钾长花岗岩(287±4Ma)分别属于A型和I型花岗岩,二者具有一致的高正εHf  相似文献   
7.
利用地面细颗粒物(PM2.5)浓度和气象常规观测资料、地基 AERONET观测资料、GFED生物质燃烧排放清单和大气化学—天气耦合模式WRF-Chem,模拟研究了华北地区2014年10月气象要素和大气污染物的时空演变,重点关注北京10月7~11日的一次重霾事件及其天气形势、边界层气象特征、输送路径、PM2.5及其化学成分浓度变化等特征,以及秸秆燃烧对华北和北京地区细颗粒物浓度和地面短波辐射的影响。与观测资料的对比结果显示,模式可以很好地模拟北京地区地面气象要素和PM2.5质量浓度,考虑秸秆燃烧排放源可以明显改进北京PM2.5浓度模拟的准确性,但在重度污染情况下,模式总体上低估气溶胶光学厚度和高估地面短波辐射。10月7~11日北京地区重霾事件主要是不利气象条件下人为污染物累积和区域输送造成,也受到华北地区南部秸秆燃烧的影响。河南北部、河北南部和山东西部大面积秸秆燃烧释放的气态污染物和颗粒物在南风的作用下输送至北京,秸秆燃烧对北京地区地面PM2.5、有机碳(OC)、硝酸盐、铵盐、硫酸盐和黑碳(BC)的平均贡献率分别为24.6%、36.8%、23.2%、22.6%、7.1%和19.8%,秸秆燃烧产生的气溶胶可以导致北京地面平均短波辐射最大减小超过20 W m-2,约占总气溶胶导致地表短波辐射变化的24%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号