首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   3篇
大气科学   8篇
  2022年   3篇
  2020年   1篇
  2019年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
利用逐小时风云卫星TBB资料、逐小时中国自动站与CMORPH降水产品融合数据以及国家级地面观测站24小时累积降水量,统计分析2010~2016年夏季,伴随下游地区(104°E以东)降水的青藏高原云团东传过程以及东传过程中镶嵌于云团中的中尺度对流系统(Mesoscale Convective System,简称MCS)特征。结果表明,共出现120次伴随下游降水的高原云团东传过程,6月出现最频繁,但持续时间较长的过程多出现在7月。云团向东传播的主要三条路径是平直东传、沿长江折向东传和复合东传。其中路径二——沿长江折向东传中的过程是高影响过程,因为过程次数较多(46次),过程平均持续时间较长(62小时),在下游地区引发的降水日数和暴雨日数最多。属于东传过程的MCS在7月形成最多,集中分布在青藏高原东坡、云贵高原东部、长江沿岸及其以南地区。高原MCS影响长江中下游地区降水主要是通过向东传播的形式实现,因为即使生命史更长的中α尺度对流系统(Meso-α Convective System,简称MαCS)也鲜少直接移动至110°E以东地区。不同区域的中α尺度持续性拉长形对流系统(Permanent Elongated Convective System,简称PECS)的日变化特征显示,东传过程MCS更容易在夜间从高原东坡向东传播至下游地区。在三条路径中,路径二中的东传过程MCS数量最多、在下游地区发展最旺盛并与降水日数和覆盖范围存在更好的对应关系。  相似文献   
2.
利用高密度地面自动站逐小时降水观测资料,分析了河南省2010—2015年雨季(5—9月)短时强降水(flash heavy rain, FHR)的时空分布特征。主要结果如下:河南省FHR集中发生在7、8月,其中7月最多,8月次之;河南雨季FHR量、降水贡献和发生频率的局地差异明显,主要存在4个大值区,即豫北黄河以北地区、豫东商丘地区、豫西南伏牛山以南以东地区、豫南沿淮及其以南地区;地形对降水的增幅作用显著,且主要是通过增加FHR发生频次实现的;FHR频次日变化呈明显的双峰结构,傍晚至凌晨的前半夜为FHR频发时段;4个大值区内FHR频次日变化差异明显,如黄河以北地区其日变化幅度较大、呈单峰型,而沿淮及其以南地区其日变化幅度较小、呈持续活跃型;大部分FHR前后都伴随着连续降水,降水过程的持续时间主要在1~8 h之间,持续时间大于等于3 h的过程主要位于两个与地形密切相关的高频集中区,即伏牛山以东支脉的喇叭口地形区和沿淮及其以南地区。  相似文献   
3.
杨浩  周文  汪小康  李山山  王婧羽  王晓芳  胡泊 《气象》2022,48(5):571-579
利用国家气象信息中心提供的2 373个国家气象观测站(以下简称国家站)和区域气象观测站(以下简称区域站)小时降水量资料,从累计降水量、降水强度和时间演变等角度,分析了“21·7”(2021年7月17—22日)河南特大暴雨的极端性特征。结果表明:此次暴雨过程具有持续时间长、累计降水量大、突发性强、暴雨落区集中等特点。6天累计降水量平均达到219.05 mm·站-1,有155个站超过600 mm。全省5.43万km2累计过程降水量大于250 mm,超过“75·8”过程(1975年8月)的3.45万km2。强降水主要出现在3个时段(18日15时至19日04时、19日09时至21日08时、21日09时至22日14时),最大降水时段发生在19—21日,落区集中在太行山东南侧、伏牛山东北侧的豫中北地区。有1514个站出现至少1个时次的短时强降水(≥20 mm·h-1),大值中心分别位于郑州、新乡和鹤壁等地,部分区域短时强降水贡献率超过70%。强降水中心在20日中午至21日夜间由河南中部向河南北部移动,强度由强变...  相似文献   
4.
2012年7月21日北京特大暴雨过程的水汽输送特征   总被引:6,自引:0,他引:6  
王婧羽  崔春光  王晓芳  崔文君 《气象》2014,40(2):133-145
利用NCEP再分析资料,根据水汽收支方程计算2012年7月21日北京特大暴雨时期华北东北部暴雨区域的水汽收支情况并分析水汽输送特征。得到以下结论:经向水汽输送在此次暴雨过程中起主要作用,暴雨区内水汽主要来源于中、低层(500 hPa以下)的南边界。暴雨区内水汽的辐合与暴雨发生的时间和空间具有较好一致性,在低层水汽的辐合起主要作用,中高层水汽垂直输送作用更为显著。HYSPLIT后向轨迹模拟得到的结果显示根据水汽源地划分影响此次暴雨过程水汽输送路径主要有:从孟加拉湾、南海地区处于中低层直接北上的西南路径,以及中层以下从我国东部海域(黄海、东海为主)进入内陆之后北折向东北偏北方向运动的L形高湿路径;同时高层沿着西风带西北路径的干空气输送也对此次强降水有重要影响。三者中从东部海域到达暴雨区的水汽贡献率最大,而孟加拉湾、南海的水汽输送对于此次强降水起到了明显的增强作用。  相似文献   
5.
6.
利用逐时的风云静止卫星黑体亮温(TBB)资料和国家级地面站降水观测资料,根据中尺度对流系统(MCS)的逐时云顶覆盖范围是否包含突发性暴雨事件,识别出2010—2018年5—8月与中国西南山区突发性暴雨事件相关的中尺度对流系统(AHR-MCS),并得到其统计特征.结果表明,该地区AHR-MCS在7月出现最频繁,存在四川盆...  相似文献   
7.
汪小康  崔春光  王婧羽  杨浩  周文 《气象》2022,48(5):533-544
2021年7月中下旬在河南省发生了一场极端强降水过程,暴雨持续时间长,累计降水量大,落区集中,造成了严重的人员伤亡。基于自动站雨量数据和ERA5再分析数据探讨了多尺度系统、急流和地形对水汽的输送和辐合及降水形成的重要作用和影响机制。结果发现:暴雨发生在远距离台风影响的有利环流背景之下,大量来自西太平洋的水汽从边界层和对流层低层进入河南东侧,来自南海的水汽从南侧对流层中低层进入降水区,在低涡、切变线和辐合线的共同作用下,引发强降水。低空急流与边界层急流的耦合形成低层水汽辐合上升中心,地形起到了动力阻挡抬升和热力抬升作用,并与急流综合作用,使强降水呈带状出现在山前,且20日位于豫中,21日在豫北。  相似文献   
8.
2015年6月1—2日灾害性天气使长江流域沿江省份出现严重灾情,众多水库超限,甚至开闸泄洪,长江支流水位上升。6月1—2日长江流域出现了多个强降水雨团,雨团大多数自西向东移动,有少数雨团停滞在局地发展加强;影响湖北南部地区强降水的致灾雨团为一个,强降水集中,降水强度大,突发性明显。仅有一个中尺度对流系统(MCS)造成湖北南部地区强降水天气的发生,该对流系统生命史10.5 h,对流系统中对流发展极其强盛,回波顶高超过18 km,大于40 d Bz的强回波达到10 km高度,这在长江流域强降水事件中较少见到。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号