首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
  国内免费   13篇
大气科学   30篇
地质学   2篇
综合类   1篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  1994年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
为了解西辽河流域归一化植被指数(NDVI)的分布规律、变化趋势及对气候变化的响应,利用2000—2018年西辽河流域11个气象站逐日气象资料和MODIS归一化植被指数数据集,通过线性回归和相关分析,探讨了生长季各月NDVI与气象因子的时滞性,以及气象站周围10 km缓冲区内不同植被类型NDVI与气象因子的相关性。结果表明:西辽河流域年平均气温、最高气温、最低气温和降水量均呈上升趋势。NDVI呈上升趋势,植被有所改善,不同植被类型NDVI均呈增加趋势,耕地增加趋势最快,耕地长势受益于农事活动的完善和增进。NDVI空间分布呈现中间低,四周高特点。生长季各月NDVI与降水量存在明显的滞后性,滞后期为1个月;仅8月NDVI与前1个月平均气温和最高气温存在滞后性。不同植被类型NDVI与平均气温、最高气温的相关性密切。耕地NDVI与气象因子的相关性较好。研究结果可为维护西辽河流域生态系统平衡提供参考。  相似文献   
2.
Windows 2003 Server提供的远程终端服务功能实现了多用户同时操作,远程终端多用户通过远程终端功能可以同时在远程终端服务上运行程序、保存文件和使用网络资源等,为业务应用提供了便捷.介绍利用Windows Server 2003远程终端(包括远程桌面和终端服务),开发了气象业务中多用户共享MICAPS20、雷达PUP产品及其它气象应用系统的信息服务平台,在实际应用中发挥了很好的应用效果.  相似文献   
3.
阵风锋作为强对流的冷性出流特征,是重要的边界层辐合系统,对其自动监测识别一直是日常气象业务中的难点,该文基于深度卷积神经网络设计了阵风锋的自动识别算法。通过对输入和输出端的重新设计,在Faster RCNN算法和Inception V2网络模型的基础上实现了通过雷达回波数据对阵风锋窄带回波实现端到端自动识别。利用雷达数据绕雷达中心旋转不变性特点,增加了数据样本,降低了需提取特征的复杂度。利用2007—2011年南京雷达数据,对该模型进行了20万步的训练,总损失函数值收敛到0.003。对识别效果的分析表明,在训练样本中识别率100%,漏识率0%,准确率87%。通过对合肥雷达2009年6月5日阵风锋天气过程的32个体扫进行模型泛化能力评估,得到识别率91.7%,漏识率8.3%,正确率73.3%。  相似文献   
4.
基于数值预报和随机森林算法的强对流天气分类预报技术   总被引:4,自引:2,他引:2  
李文娟  赵放  郦敏杰  陈列  彭霞云 《气象》2018,44(12):1555-1564
随机森林算法是当前得到较为广泛应用的机器学习方法之一,有着很高的预测精度,训练结果稳定,泛化能力强,解决多分类问题有明显优势。本文将随机森林算法应用于强对流的潜势预测和分类,分短时强降水、雷暴大风、冰雹和无强对流四种类别,基于2005—2016年NCEP 1°×1°再分析资料计算的对流指数和物理量,开展强对流天气的分类训练、0~12 h预报和检验,经2015—2016年独立测试样本检验表明,针对强对流发生站点的点对点检验,整体误判率为21. 9%,85次强对流过程基本无漏报,模型尤其适用于较大范围强对流天气。随机森林算法筛选的因子物理意义较为明确,和主观预报经验基本相符,模型准确率高,可用于日常业务。  相似文献   
5.
基于3 h间隔的浙江快速更新同化模式资料、常规探空资料和临安双偏振雷达资料反演产品对浙江地区2015年12月5日的首场降雪过程的特征进行了分析,得到了较高的云顶高度、较低的云顶温度、较低的零度层高度、较低的低层平均温度、稳定的底层冷平流以及特殊的地形是浙西北地区在较高的地表温度情况下易形成降雪的原因;同时对临安双偏振雷达产品资料进行了分析,首次提出浙江地区此类降雪的双偏振雷达产品特征,并得到了判别阈值.希望借助两方面的研究来减少此类降雪天气的漏报率和可预报性.  相似文献   
6.
Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar reflectivity data. The model’s initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.  相似文献   
7.
With the pros and cons of the traditional optimization and probability pairing methods thoroughly considered, an improved optimal pairing window probability technique is developed using a dynamic relationship between the base reflectivity Z observed by radar and real time precipitation I by rain gauge. Then, the Doppler radar observations of base reflectivity for typhoons Haitang and Matsa in Wenzhou are employed to establish various Z-I relationships, which are subsequently used to estimate hourly precipitation of the two typhoons. Such estimations are calibrated by variational techniques. The results show that there exist significant differences in the Z-I relationships for the typhoons, leading to different typhoon precipitation efficiencies. The typhoon precipitation estimated by applying radar base reflectivity is capable of exhibiting clearly the spiral rain belts and mesoscale cells, and well matches the observed rainfall. Error statistical analyses indicate that the estimated typhoon precipitation is better with variational calibration than the one without. The variational calibration technique is able to maintain the characteristics of the distribution of radar-estimated typhoon precipitation, and to significantly reduce the error of the estimated precipitation in comparison with the observed rainfall.  相似文献   
8.
赵放  王东法  杨军  陈列  徐月飞 《浙江气象》2011,32(3):8-12,27
利用浙江省雷达、自动站等现代探测资料,结合数值预报等,形成连续滚动的高分辨(0.01经纬度格距)0~3 h网格化定量降水预报,通过G IS数字高程模型、遥感数据(地质、土壤、土地利用现状)的数据库分析获取浙江省境内地质灾害易发程度的分布数据,对传统的灾害预警模型以Logistic回归模型为基础进一步改进,再采用逐时滚动递进方式引入"前期有效累积降雨量"算法,应用网格化的处理方式,建立具有高分辨(约1 km×1 km)的强降雨诱发型滑坡、泥石流网格化的客观预报预警模型,期望探索和改进气象灾害的预报技术方法,尝试提高预报的精细化程度。  相似文献   
9.
一次局地暴雪过程低层降温机制分析   总被引:1,自引:0,他引:1  
彭霞云  刘汉华  李文娟  赵放  孔照林 《气象》2020,46(8):1015-1025
2015年12月5日在强西南暖湿气流和弱冷空气配合之下,浙江杭州到安徽黄山一带出现了局地大到暴雪,此次过程预报偏差较大。通过对水汽、动力和温度条件分析表明:强西南暖湿气流和冷暖空气的辐合为大量地面降水的产生提供了水汽和动力条件;深厚的湿层和合适的中层温、湿条件有利于生成大量可供降落的冰雪晶;转雪前杭州站低层异常降温是形成降雪的关键原因。通过对降温机制的分析表明:引起杭州站低层降温的原因主要是水物质相变相关的非绝热加热,冷平流的作用很弱。5日08时之前低层降温主要是降水粒子蒸发吸热引起的;5日白天低层降温主要是由大量冰(雪)晶融化吸收环境潜热导致,冷平流和垂直输送项也有部分贡献。预报中对降温机制分析不足,可能是导致预报偏差的主要原因。该个例中平流等降温机制较弱,冰晶融化吸热作用导致中低层形成0℃的均温层,从而使冰晶顺利到达地面。中低层温度与常用的预报相态的温度阈值相差较大,说明预报中不能机械依赖温度指标,而应全面分析降雪形成的物理机制。当降水量大时,融化吸热可以成为降温的主要机制,预报中应予以充分考虑。  相似文献   
10.
浙江沿海登陆台风结构特性的多普勒雷达资料分析   总被引:1,自引:0,他引:1  
利用浙江省新一代多普勒雷达组网资料,选取在浙江东南沿海近乎同一地点登陆的3个台风进行研究。从登陆前6 h到登陆后7 h,对比分析3个台风在登陆前后的雷达回波和降水结构时空变化特征。利用单多普勒雷达四维变分风场反演技术,对温州多普勒雷达探测资料进行了风场反演。结合利用雷达回波强度资料,对3个台风登陆前后1 h在云岩、昌禅等地造成特大暴雨的中尺度对流系统的三维结构及其演变特征进行了详细分析。结果表明,台风强度与其螺旋云带中的对流单体密切相关。台风强度愈强,其中低层环状平均回波强度就愈强,对流活动也就愈旺盛,降水强度也愈大。台风登陆前,回波(雨带)从眼墙向外围传播。台风登陆后,随着台风外围回波(雨带)明显减弱,台风眼墙回波(雨带)则明显增强,台风眼区逐渐被强回波所取代,使台风登陆后眼墙的平均雨强比登陆前增大。台风登陆后1 h,由于低(高)层水平辐合(散)增强,强对流回波中倾斜的上升(下沉)气流明显增大,使对流运动更加活跃,造成登陆后1 h的降雨量显著增强。台风强度与登陆后1 h降雨量的增强幅度成正比。台风强度越强,垂直风切变就越大,垂直切变风速大值区与最大降雨区有较好的对应关系。台风登陆后1 h,垂直切变风速的明显增加对登陆台风螺旋雨带中的中小尺度对流的加强和维持起到了非常重要的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号