首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   9篇
测绘学   1篇
大气科学   2篇
海洋学   8篇
自然地理   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
基于2018年8月至2019年5月布放在北极随海冰漂流的自动气象站和温度链浮标获取的观测数据,分析了北极高纬度区域的大气特征和海冰生消过程。根据海冰的漂移轨迹分为两个阶段分析,第1阶段,海冰主要向东南漂移;第2阶段,海冰主要向东北漂移。第1阶段观测的平均气温和平均相对湿度分别为–6.6℃和93%,第2阶段观测的平均气温和平均相对湿度分别为–29.3℃和76%,第2阶段平均气压高于第1阶段。海冰的漂移轨迹主要受到波弗特高压外围气流的影响。利用自动气象站漂移轨迹计算得到海冰漂移速度,与美国国家冰雪数据中心海冰漂移速度比较显示,两者纬向速度更为接近。海冰在第1阶段以融化为主,海冰厚度略有减小,8月份海冰生长率为–0.11 cm/d;海冰的生长过程主要发生在第2阶段,1–3月生长率均超过0.9 cm/d,2019年3月海冰生长最快,平均生长率为1.3 cm/d,海冰的增长一直持续至观测结束。  相似文献   
2.
A South China Sea (SCS) local TC (SLT) is defined as a tropical cyclone (TC) that forms within the SCS region and can reach the grade of tropical storm (TS) or above. The statistical features of the SLTs from 1985 to 2007 are analyzed first. It is found that over the SCS about 68% of the TCs can develop into TSs. The SLT intensity is relatively weak and associated with its genesis latitude as well as its track. The SLT monthly number presents a seasonal variation with two peaks in May and July to September. Based on the daily heat flux data from the Woods Hole Oceanographic Institution_Objectively Analyzed air-sea Fluxes (WHOI_OAFlux) in the same period, the air-sea exchange during the process of generation and development of the SLT is studied. Results show that the heat fluxes released to the atmosphere increase significantly day by day before cyclogenesis. The ocean to the south to the TC center provides the main energy. Along with the development of SLT, the regions with large heat fluxes spread clockwise to the north of TC, which reflects the energy dispersion property of vortex Rossby waves in the periphery of the TC. Once the SLT forms the heat fluxes are not intensified as much. During the whole process, the net heat, latent heat and sensible heat flux display a similar evolution, while the latent heat flux makes a main contribution to the net heat flux. The maximum air-sea heat exchange always occurs at the left side of the TC moving direction, which may reflect the influence of the SCS summer monsoon on TC structure.  相似文献   
3.
南海土台风生成及发展过程海气热通量交换特征   总被引:3,自引:1,他引:2  
利用1985—2007年西北太平洋热带气旋(TC)资料,定义生成于南海范围内并且发展强度达到热带风暴(TS)等级及以上的热带气旋为南海土台风,统计了南海土台风的季节演变特征,发现南海生成的TC约有68%发展成为土台风,其强度普遍较弱且与TC生成纬度和路径均有关。其频数的季节变化呈双峰结构,5月和7—9月是南海土台风的高发期。结合同期美国伍兹霍尔海洋研究所的1°×1°客观分析海气通量(WHOI_OAFlux)日平均资料,分析了南海土台风生成及发展各阶段的海气热通量分布特征。结果表明:南海土台风形成过程中,海洋向大气释放的热通量逐日递增,台风眼南侧的海洋为台风形成提供主要能量来源,随着台风发展热通量高值区都沿顺时针方向向台风北侧传播,体现了台风外围涡旋罗斯贝波的能量频散特征,土台风形成后,热通量的加强不再明显。在土台风整个形成及发展过程中,净热通量、潜热通量和感热通量三者的变化较为一致,以潜热对净热的贡献为主,最大热量交换位于台风移动方向的南半圆,可能与南海西南季风作用有关。  相似文献   
4.
2017年夏季中国第八次北极科学考察期间,"雪龙"号极地考察船首次成功穿越北极中央航道,期间全程开展了海冰要素的人工观测。中央航道走航期间的平均海冰密集度和平均冰厚分别为0.64和1.5 m,海冰密集度时空变化大且以厚当年冰为主,高纬密集冰区的浮冰大小显著高于海冰边缘区。基于"雪龙"号的船基走航观测海冰密集度评估比较了国际上常用的5种常用的微波遥感反演海冰密集度产品,同走航目测海冰密集度点对点的比较,误差最大的为德国不来梅大学AMSR2基于Bootstrap算法的产品,平均误差和均方根误差分别为0.19和0.28;误差最小的为欧洲气象卫星应用组织基于AMSR2数据和OSHD和TUD两种不同算法的产品,平均误差分别为-0.02和0.01,均方根误差均为0.20。从日平均比较来看,AMSR2基于Bootstrap算法的误差最大,平均误差和均方根误差分别为0.15和0.20;AMSR2/OSI SAF(TUD)的误差最小,平均误差和均方根误差分别为0.0和0.11,OSI SAF产品更接近人工观测结果。  相似文献   
5.
极区海冰密集度AMSR-E数据反演算法的试验与验证   总被引:4,自引:2,他引:2  
海冰密集度是极区海冰监测的重要参数,目前分辨率最高的微波海冰密集度产品为德国Bremen大学发布的针对AMSR-E 89 GHz频段数据利用ASI算法反演的网格数据。为实现中国极区遥感产品从无到有的战略步骤,本文针对AMSR-E 89GHz频段微波数据的ASI算法,进行了插值算法、系点值和天气滤波器一系列试验。针对北极海区,着重对影响反演结果的主要参数——纯冰和纯水的亮温极化差异阈值,即系点值(P1P0)进行了2009年全年的统计分析。研究表明,2009年北极纯冰和纯水的代表区域P1P0年平均值分别为10.0 K和46.67 K;2 K以上的系点值差异引起的海冰密集度差别较为显著;同样的系点值差异在不同极化差异P取值范围对海冰密集度的影响也不同。通过统计确定的系点值推算并修正了海冰密集度反演公式,对2009年全年北极海冰密集度进行了反演,并与Bremen大学产品进行了比较。继而对白令海和楚科奇海12个晴空下MODIS可见光样本数据进行反演,以验证AMSR-E冰密集度反演结果,并对误差原因进行了分析。本研究反演结果与MODIS样本比对的误差略小于Bremen大学的反演产品,空间平均误差为3.84%,空间平均绝对误差10.83%。  相似文献   
6.
北极冬季季节性海冰双模态特征分析   总被引:1,自引:1,他引:0  
郝光华  苏洁  黄菲 《海洋学报》2015,37(11):11-22
近年来北极海冰快速变化,北极中央区边缘正由以多年冰为主转为季节性海冰为主。通过对北极冬季季节性海冰的EOF分解发现,2002-2012年期间北极季节性海冰变化的前两模态主要体现为2005年和2007年的季节性海冰距平。其中第二模态主要体现了北极海冰在2005年的一种极端变化,而第一模态不仅体现了北极海冰在2007年的变化,还体现了北极季节性海冰的从负位相到正位相的转变。通过比较发现,在研究时段北极季节性海冰最主要的变化发生在北极太平洋扇区,在2007年,冬季季节性海冰距平发生位相转变,2007-2010年一直维持正位相,北极太平洋扇区冬季季节性海冰保持显著正距平。太平洋扇区表面温度最大异常也发生在2007年,从大气环流来看,2007年之后波弗特海区异常高压有利于夏季太平洋扇区海冰的减少,而西风急流的减弱有利于夏季波弗特海区异常高压的维持,结合夏季海冰速度,顺时针的冰速分布有利于海冰离开太平洋扇区,因而会导致冬季太平洋扇区季节性海冰转为正距平并且从2007年一直维持到2010年。  相似文献   
7.
本文系统地评估了国家海洋环境预报中心于我国第七次北极科学考察期间开展的北极海冰密集度数值预报结果。该预报系统基于麻省理工大学通用环流模式,并采用牛顿松弛逼近(Nudging)资料同化方法,计算输出未来1~5 d的北极海冰密集度预报产品。本文将数值预报结果同卫星观测的海冰密集度、再分析资料和"雪龙"号第七次北极考察期间观测的海冰密集度数据进行了对比分析。结果表明,预报的北极海冰密集度小于卫星观测值,24 h、72 h和120 h预报结果的偏差分别为-2.7%、-3.1%和-3.2%;数值产品的预报技巧好于气候态结果和惯性预报,但是在海冰出现快速融化或冻结时,基于Nudging同化的数值预报技巧仍有不足。另外,相比船测数据,数值预报结果在海冰边缘区的偏差相对较大,24 h、72 h和120 h预报结果的偏差分别为8.8%、12.0%和14.5%。  相似文献   
8.
2016年南极中山站固定冰冰厚观测分析   总被引:1,自引:1,他引:0  
极区海冰是全球气候系统的重要组成部分,南极的固定冰普遍存在于其沿海地区,中山站周边固定冰一般在11月中下旬达到最厚。海冰厚度是海冰的重要参数之一,2016年在南极中山站附近3个站点(S1、S2、S3站点)共布放了4套温度链浮标,包括1套SIMBA (Snow and Ice Mass Balance Array)温度链浮标和3套太原理工大学温度链浮标(TY温度链浮标),SIMBA温度链浮标每天观测4次,TY温度链浮标每小时观测1次。利用浮标观测的温度剖面以及海冰和海水间不同介质温度差异计算得到海冰厚度。在S3站点,同时布放了SIMBA温度链浮标和TY温度链浮标。温度链浮标计算冰厚和人工钻孔观测冰厚比较结果显示,S1站点TY温度链浮标计算的海冰厚度平均误差和均方根误差分别为3.3 cm和14.7 cm,S2站点和S3站点分别为6.6 cm、6.9 cm以及4.0 cm、4.8 cm。S3站点的SIMBA温度链浮标计算冰厚和人工观测冰厚的平均误差和均方根误差为8.2 cm和9.7 cm。因而S3站点TY温度链浮标计算的海冰厚度更接近人工观测的结果。进一步对Stefan定律海冰生长模型进行对比,模型计算得到的海冰生长率为0.1~0.8 cm/d,生长率快于TY温度链浮标的结果,且受积雪影响明显。相比于卫星遥感反演冰厚的误差和观测时段的限制以及有限的人工观测,2种温度链浮标未来对于中山站附近海冰的长期监测均有重要的应用价值。  相似文献   
9.
2016年4月至11月在南极中山站普里兹湾布设了A1、A2、A3 3套冰雪情检测传感器。传感器每隔1 h采集一次数据,实时获取了被测点空气、积雪、海冰和海水的剖面温度数据。通过对不同介质剖面温度的分析,系统可以有效反映出海冰、积雪在气温影响下的温度变化差异,即空气、积雪、海冰和海水的热传导特性差异。通过寻找合理的温度阈值,编写MATLAB程序分别对积雪、海冰上下界面位置进行了自动判断,从而得到整个观测期间海冰厚度和积雪深度的变化过程。并与人工观测进行比较,结果表明:从传感器安装时间开始,海冰持续增长,10月开始海冰增长速度放慢,直至10月末达到最大海冰厚度170 cm左右。A1、A2、A3传感器采集的冰厚值与人工观测值之间平均误差分别为5.1 cm(A1)、3.4 cm(A2)、3.6 cm(A3);积雪深度的平均误差分别为3.2 cm(A1)、3.5 cm(A2)、2.7 cm(A3),传感器测得的积雪、海冰厚度结果可以较好的反映出被测地点冰雪情的演变过程,是一种可以应用于条件恶劣地区的冰雪环境有效检测手段。  相似文献   
10.
北极海冰密集度动态系点值ASI反演算法研究   总被引:3,自引:0,他引:3  
海冰密集度是极区海冰监测的重要因素,使用AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) 89GHz数据ASI反演算法得到的海冰密集度是目前能够获得的分辨率最高的微波数据.在以前的算法中往往使用固定的系点值,本研究实现了动态系点值ASI (the Arctic Radiation And Turbulence Interaction Study (ARTIST) Sea Ice)算法,更重要的是在统计开阔水系点值的时候消除了云对系点值的影响,使得纯水系点值更接近真实状况.得到2010年平均的开阔水和海冰的系点值分别为50.8K和7.8K,通过每天的系点值得到的反演方程在低密集度区增大了海冰密集度,在高密集冰区减小了海冰密集度,从而在一定程度上改善了微波数据的反演准确度.通过和北极区域选取40幅不受云影响的MODIS 500m分辨率宽频大气层顶反照率(broadband TOA albedo)计算的海冰密集度进行了比较验证.结果显示,40个个例中,95%本文的平均差异比使用固定系点值算法产品的小,而且75%的均方根差异比使用固定系点值算法产品的小.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号