首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  国内免费   1篇
大气科学   26篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   7篇
  1996年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
利用江西省93个国家气象观测站降水量资料,对2014年ECMWF集合预报降水统计量进行逐6 h和24 h晴雨检验、降水分级检验及区域性暴雨检验。结果表明:1)10%、25%、Mode、融合、最小值在晴雨预报准确率方面较控制预报更有参考价值。2)对于全年降水分级检验,10%、25%、Mode、融合、最小值这5个统计量在小雨的预报方面较控制预报更有参考价值;中位数、概率对中雨的ETS评分要略高于控制预报;90%、75%、概率对大雨预报比控制预报好。对于暴雨预报,最大值、90%、融合比控制预报好;融合、最大值对大暴雨落区的指示意义不大,但对大暴雨量级降水的可能性可以供预报员参考。3)对于区域性暴雨预报,90%、融合、最大值的预报技巧比控制预报高,最大值虽然空报较严重,但对降水量级有一定的指示意义。集合预报各统计量对于强降水过程爆发或发展阶段的预报效果不如降水过程成熟期或末期好。  相似文献   
2.
综合运用风廓线雷达等多种非常规探测资料,对江西省2013年6月29日暖区大暴雨进行分析,并对比6月28日锋面暴雨,归纳总结短时大暴雨发生的一些前兆信号及可用指标。结果表明:1)风廓线雷达能直观反映暴雨区附近中小尺度扰动、近地面弱冷空气入侵、急流脉动发展等特征,1.5—4 km高度层出现16 m/s以上急流对暖区暴雨发生有利,对强降水的发生有1—3 h提前指示作用。2)0.5—1.5 km高度层正的风垂直切变带对应降水发生发展,正速度带中大于4 m/s风速切变对应下游降水加强。3)PWV值在强降水发生前常出现持续上升或波浪上升。PWV值达到65 mm且维持较长时间,同时配合动力触发条件,有利于强降水的发生;PWV值低于60 mm并持续性下降,对应降水趋于减弱停止;强降水落区出现在湿舌前端的PWV等值线密集区内。4)此次强降水主要发生在TBB小于-40℃区域前端的等值线密集区和地面辐合线附近,且地面辐合线的强度、移向与新生单体的发展密切相关;强回波不断在地面辐合线附近合并加强形成"列车效应",雷达回波上逆风区、急流核、速度对等特征的出现有利于强降水的维持。  相似文献   
3.
为探讨模式产品预报不一致性问题,利用2015年11月—2016年10月业务中常用的GQEC,GQJP及T639模式的12 h降水、2 m温度网格产品,采用跳跃指数定量计算方法,研究了产品在不同区域内跳跃指数变化与预报不一致性问题。结果表明:产品多日平均跳跃指数随预报时效延长而增大;长时效预报比短时效预报跳跃频率大、预报不一致性也大;对比两种要素可知,降水的跳跃指数比温度大,跳跃频率高,预报不一致性大;对比不同模式发现,GQEC不仅跳跃指数值小,且跳跃频率低,预报不一致性小,GQJP虽然跳跃指数值小于T639,但其跳跃频率更高,预报一致性较T639低;产品跳跃频率存在季节差异,夏季降水和温度预报跳跃频率最高而冬季最低,夏季预报不一致性最大。研究还发现:基于跳跃指数的预报不一致性特征与选取的区域大小密切相关,区域越大,跳跃指数和预报不一致性越小;区域内跳跃指数分布特征与地理位置和地形等有关。  相似文献   
4.
首先介绍了我国数值预报和T213模式的基本情况,并将T213模式的主要技术特征与T106进行了比较;然后对T213预报产品进行了对比分析,并对T213的应用前景和再改进进行了展望.  相似文献   
5.
第五届全国农运会在江西宜春举办,为保障本届农运会的顺利进行,江西省气象局对气象服务工作进行了周密细致的部署。本文分析了气候条件及气象要素对本届农运会的影响,并从组织管理、开幕式气象保障、数值模式和农运专题网页四个方面分析了本届农运会的气象服务情况。  相似文献   
6.
台风"碧利斯"的结构与江西暴雨诊断分析   总被引:8,自引:6,他引:8  
利用T213资料、自动气象站加密资料和常规观测资料等,研究分析了0604号台风“碧利斯“的环流背景、移动路径、内部结构和外围暴雨的分布特征,并将其与0505号台风“海棠“、0513号台风“泰利“、0414号台风“云娜“,进行了对比分析.研究结果表明,台风暴雨与台风环流场、热力场的不对称有关,并不一定总是集中在环流中心附近.无论是对称结构,还是非对称结构,降水中心都与强对流云带位置相对应.“碧利斯“先西北行后向西折的路径,主要是受强大稳定的副热带高压引导,并表现为明显的不对称结构,东侧、南侧的积云对流较为旺盛,降水主要集中在移动路径的第三象限;850 hPa台风环流场表现为南部环流强盛,南海季风为西南急流的稳定维持提供了充沛的水汽条件;局地地形激发深厚的上升运动,进而产生庐山和赣南南部山区的大暴雨天气;垂直运动、散度、涡度、水汽通量、假相当位温等各物理量场,均与外围暴雨区有较好的对应关系.  相似文献   
7.
利用地面高空常规探测资料、NCEP再分析资料、数值模式预报资料,针对2012年第11号台风“海葵”登陆后移动路径的突然西折蜗行和陆上的长久维持机制两大预报难点,从大尺度环流特征和物理场两方面进行了诊断分析。结果表明:(1)“海葵”登陆后由西北方向移动转为西折,是由于其北部东、西两环副高未能因低槽东移而完全断开形成北上的通道,西环副高对其西行又形成阻挡作用,使得“海葵”低压环流西折并在安徽省南部蜗行。(2)“海葵”移动方向前侧有正涡度平流中心,正、负涡度平流中心的连线与未来移向基本吻合,其中心沿着不稳定区域和高能区域移动,存在趋暖运动。(3)“海葵”登陆后大风速区呈逆时针旋转,低压环流的风场分布出现明显不对称,东风分量比西风分量大,风场结构中不对称的强风速区转移使西北移动的路径减速并西折。(4)西南风低空急流是“海葵”在陆上久留不消的重要水汽输送带。“海葵”高层与中纬度急流靠近,高空急流出口区的强辐散也有助于其在陆上的维持。(5)“海葵”登陆后较长时间位于对流层风速垂直切变经向梯度大值区中,其中心附近垂直风切变很小,这使得其衰减缓慢,维持时间长。此外,“海葵”登陆后经过较大水面及前期大降水区为其长久维持提供了潜热能源。  相似文献   
8.
台风“海葵”(2012)造成的景德镇特大暴雨过程分析   总被引:1,自引:0,他引:1  
利用NCEP再分析资料和常规观测资料等,对2012年8月8-10日“海葵”台风引发的景德镇地区特大暴雨过程的原因进行分析。结果表明,因北方高压脊阻挡,台风低压在安徽省南部地区长时间停滞,导致景德镇地区出现持续性的强降水。强降水发生期间,高层辐散,低层辐合,上升运动深厚而强盛。台风登陆后在向西偏北方向行进的过程中,中心西侧有弱冷空气补充,大气层结由对流稳定变为对流不稳定,景德镇地区的强降水的性质也随之发生改变。对应两次暴雨极值的出现,景德镇地区高、低空的动力、热力、水汽和不稳定条件,均有利于降水的加强。向西南开口的“簸箕”地形有利于西南暖湿气流的抬升,从而导致此次台风暴雨的加强。  相似文献   
9.
一次北上江南气旋的结构特征与演变机理分析   总被引:1,自引:0,他引:1  
郭达烽  熊秋芬  张昕 《气象》2017,43(4):413-424
利用常规的高空、地面观测、NCEP的1°×1°再分析资料和FY-2E水汽图像等资料,分析了一次北上的江南气旋降水分布、生成环境、结构特征及气旋发展和移动的成因。结果表明:(1)气压场形状和强降水落区的演变类似于Shapiro-Keyser气旋模型。(2)江南气旋发生并向北发展,表现为250 hPa高空辐散,500 hPa西北槽与高原东部槽东移合并、下游脊加强环流的背景。(3)这次气旋虽然没有出现Shapiro-Keyser气旋模型中明显的暖锋后弯现象,但在低压中心附近存在弱的暖核,该核主要位于850 hPa以下层次。(4)当正相对涡度区随高度向西倾斜、地面气旋中心西侧的冷锋锋区增强、高层相对涡度值增大时,气旋处于快速加深过程中;当高低层正相对涡度中心几乎垂直重合、且对流层低层冷锋锋区减弱,则气旋缓慢发展。(5)暖湿气流向北发展和垂直于暖锋的次级环流加强使得暖锋附近的降水增强。(6)用准地转ω运动方程诊断得到,在气旋的初生阶段,地面气旋上空垂直上升速度几乎为0,气旋基本不发展;但其下游暖平流和高低层涡度平流差值大,有利于气旋快速向东北方向移动。在气旋发展阶段,地面气旋上空垂直上升速度加大,气旋快速发展,但其下游暖平流和高低层涡度平流差值减小使得气旋移速缓慢。在气旋发展停滞阶段,地面气旋上空垂直上升速度微弱,气旋发展趋于停止,且其下游暖平流和高低层涡度平流差值继续减小,气旋移速进一步变缓。  相似文献   
10.
98.6连续暴雨的对称不稳定研究   总被引:1,自引:0,他引:1  
通过分析98.6连续暴雨过程的扰动风场与降水强度之间的关系,以及扰动风场与非线性和线性对称不稳定之间的关系,进而研究非线性和线性对称不稳定与降水强度和位置之间的关系,认为在日常降水预报中应注意扰动风场的变化以及非线性和线性对称不稳定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号