首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   4篇
测绘学   1篇
大气科学   10篇
地球物理   39篇
地质学   15篇
海洋学   5篇
天文学   4篇
自然地理   11篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2015年   6篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   9篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1965年   1篇
排序方式: 共有85条查询结果,搜索用时 859 毫秒
1.
The U.S. and U.K. literatures have discussed “food deserts,” reflecting populated, typically urban, low‐income areas with limited access to full‐service supermarkets. Less is known about supermarket accessibility within Canadian cities. This article uses the minimum distance and coverage methods to determine supermarket accessibility within the city of Edmonton, Canada, with a focus on high‐need and inner‐city neighborhoods. The results show that for 1999 both of these areas generally had higher accessibility than the remainder of the city, but six high‐need neighborhoods had poor supermarket accessibility. We conclude by examining potential reasons for differences in supermarket accessibility between Canadian, U.S., and U.K. cities.  相似文献   
2.
3.
4.
5.
6.
ABSTRACT

In the past decade society has entered a technological period characterized by handheld computing that supports input and processing from numerous sensors. Today’s mobile phones offer the ability to integrate input from sensors monitoring various external and internal sources (e.g., accelerometer, magnetometer, microphone, GPS, wireless Internet, and Bluetooth). Furthermore, these raw inputs can be integrated and processed in ways that can offer novel representations of human behaviour. As a result, new opportunities to examine and better understand human spatial behaviour are available; one such application is the constant monitoring of a group of people over an extended period of time. Such a research setting lends itself to natural experiments that emerge as a result of regular and on-going observations. We report here on the observation of a natural experiment that took place in the context of a month-long monitoring study of 28 participants using mobile phone-based ubiquitous sensor monitoring. The implications for public health and transportation planning are discussed.  相似文献   
7.
—By rupturing more than half of the shallow subduction interface of the Nazca Ridge, the great November 12, 1996 Peruvian earthquake contradicts the hypothesis that oceanic ridges subduct aseismically. The mainshock’s rupture has a length of about 200 km and has an average slip of about 1.4 m. Its moment is 1.5 × 1028 dyne-cm and the corresponding M w is 8.0. The mainshock registered three major episodes of moment release as shown by a finite fault inversion of teleseismically recorded broadband body waves. About 55% of the mainshock’s total moment release occurred south of the Nazca Ridge, and the remaining moment release occurred at the southern half of the subduction interface of the Nazca Ridge. The rupture south of the Nazca Ridge was elongated parallel to the ridge axis and extended from a shallow depth to about 65 km depth. Because the axis of the Nazca Ridge is at a high angle to the plate convergence direction, the subducting Nazca Ridge has a large southwards component of motion, 5 cm/yr parallel to the coast. The 900–1200 m relief of the southwards sweeping Nazca Ridge is interpreted to act as a "rigid indenter," causing the greatest coupling south of the ridge’s leading edge and leading to the large observed slip. The mainshock and aftershock hypocenters were relocated using a new procedure that simultaneously inverts local and teleseismic data. Most aftershocks were within the outline of the Nazca Ridge. A three-month delayed aftershock cluster occurred at the northern part of the subducting Nazca Ridge. Aftershocks were notably lacking at the zone of greatest moment release, to the south of the Nazca Ridge. However, a lone foreshock at the southern end of this zone, some 140 km downstrike of the mainshock’s epicenter, implies that conditions existed for rupture into that zone. The 1996 earthquake ruptured much of the inferred source zone of the M w 7.9–8.2 earthquake of 1942, although the latter was a slightly larger earthquake. The rupture zone of the 1996 earthquake is immediately north of the seismic gap left by the great earthquakes (M w 8.8–9.1) of 1868 and 1877. The M w 8.0 Antofagasta earthquake of 1995 occurred at the southern end of this great seismic gap. The M w 8.2 deep-focus Bolivian earthquake of 1994 occurred directly downdip of the 1868 portion of that gap. The recent occurrence of three significant earthquakes on the periphery of the great seismic gap of the 1868 and 1877 events, among other factors, may signal an increased seismic potential for that zone.  相似文献   
8.
9.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   
10.
This paper will look at what we have and have not achieved in reducing the risks to human life from earthquakes in the last 50 years. It will review how success has been achieved in a few parts of the world, and consider what needs to be done by the scientific and engineering community globally to assist in the future task of bringing earthquake risks under control. The first part of the talk will re-examine what we know about the casualties from earthquakes in the last 50 years. Almost 80% of about 1 million deaths turn out to have been caused by just ten great earthquakes, together affecting a tiny proportion of the territory at risk from heavy ground shaking. The disparity between richer and poorer countries is also evident, not only in fatality rates, but also in their rates of change. But the existing casualty database turns out to be a very poor basis for observing such differences, not only because of the small number of lethal events, but also because of the very limited data on causes of death, types and causes of injury. These have been examined in detail in only a few, recent events. All that can be said with certainty is that a few wealthier earthquake-prone countries or regions have made impressive progress in reducing the risk of death from earthquakes, while most of the rest of the world has achieved comparatively little, and in some areas the problem has become much worse. The second part of the paper looks in more detail at what has been achieved country-by-country. Based on a new expert-group survey of key individuals involved in earthquake risk mitigation, it will examine what are perceived to be the successes and failures of risk mitigation in each country or group of countries. This survey will be used to highlight the achievements of those countries which have successfully tackled their earthquake risk; it will examine the processes of earthquake risk mitigation, from campaigning to retrofitting, and it will consider to what extent the achievement is the result of affluence, scientific and technical activity, political advocacy, public awareness, or the experience of destructive events. It will ask to what extent the approaches pioneered by the global leaders can be adopted by the rest. The final section of the talk will argue that it can be useful to view earthquake protection activity as a public health matter to be advanced in a manner similar to globally successful disease-control measures: it will be argued that the key components of such programmes—building in protection; harnessing new technology and creating a safety culture—must be the key components of earthquake protection strategies also. It will consider the contribution which the scientific and engineering community can make to bringing down today’s unacceptably high global earthquake risk. It will be suggested that this role is wider than commonly understood and needs to include: Building-in protection
•  Improving and simplifying information available for designers and self-builders of homes and infrastructure.
•  Devising and running “building for safety” programmes to support local builders.
Harnessing new technologies
•  Developing and testing cost-effective techniques for new construction and retrofit.
Creating a safety culture
•  Involvement in raising public awareness.
•  Political advocacy to support new legislation and other actions.
•  Prioritising action on public buildings, especially schools and hospitals.
Examples of some of these actions will be given. International collaboration is essential to ensure that the resources and expertise available in the richer countries is shared with those most in need of help. And perhaps the most important single task for the engineering community is work to counter the widespread fatalistic attitude that future earthquakes are bound to be at least as destructive as those of the past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号