首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
测绘学   6篇
大气科学   28篇
地球物理   28篇
地质学   30篇
海洋学   15篇
天文学   9篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   11篇
  2019年   4篇
  2018年   5篇
  2017年   12篇
  2016年   3篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   6篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有123条查询结果,搜索用时 169 毫秒
1.
Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.  相似文献   
2.
In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution (SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species (48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.  相似文献   
3.

Gas well drilled through longwall mining abutment pillar could potentially face instability issue due to the strata deformation following longwall panel extraction. Therefore, it is imperative to adequately design the pillar size of a longwall mining in order to ensure the stability of the gas well penetrated longwall mining abutment pillar. In this paper, the determination of suitable pillar size for protecting gas well subjected to longwall mining operation was investigated. Two scenarios of longwall gateroad system including the three and four entry system with varying pillar sizes were assessed using numerical modelling approach. The results of this study indicate that the pillar geometry plays an important role on the vertical gas well stability. In addressing the suitable pillar size for the given case study considering three entry system, the suitable chain pillar and abutment pillar size were found to be 80 ft (24.4 m) wide by 120 ft (36.6 m) length and 104 ft (31.7 m) wide by 120 ft (36.6 m) length rib to rib, respectively. Whereas, if four entry system is used, the suitable chain pillar size is 48 ft (14.6) wide by 120 ft (36.6 m) length and the abutment pillar size is 104 ft (31.7 m) wide by 120 ft (36.6 m) length rib to rib. The proposed numerical modelling procedure presented in this paper can be a viable alternative and applied to other similar projects in order to determine an optimal pillar size for protecting gas well in longwall mining area.

  相似文献   
4.
We present a new method of calculating cross-field diffusion of charged particles due to their interactions with interplanetary magnetic decreases (MDs) in high heliospheric latitudes. We use a geometric model that evaluates perpendicular diffusion to the ambient magnetic field as a function of particle's gyroradius, MD radius, ratio between fields outside and inside the MD, and a random impact parameter. We use Ulysses magnetic field data of 1994 to identify the MDs and get the empirical size and magnetic field decrease distribution functions. We let protons with energies ranging from 100 keV to 2 MeV interact with MDs. The MD characteristics are taken from the observational distribution functions using the Monte Carlo method. Calculations show that the increase in diffusion tends to saturate when particles' gyroradius becomes as large as MD radii, and that particles' gyroradius increases faster than diffusion distance as the energy of the particles is increased.  相似文献   
5.
We address the geoeffectiveness of three interplanetary structures in the interplanetary space: magnetic clouds (MCs), interplanetary shocks (IPSs), and corotating interaction regions (CIRs). The geoeffectiveness is evaluated using the geomagnetic indices Kp, AE, and Dst. We find that MCs are more geoeffective than IPSs, or CIRs. The average values of magnetic indices are significantly enhanced during disturbed periods associated with MCs, IPSs and CIRs, compared to the whole interval. The highest effect is noted for MC disturbed periods.Results obtained for the three data sets are used to derive a theoretical (continuous) probability distribution function (PDF) by fitting the histograms representing the percentage of events against the intervals of magnetic index. PDFs allow estimation of the probability of a given level of geomagnetic activity to be reached after the detection, by in situ solar wind observations, of a given interplanetary structure approaching the Earth.  相似文献   
6.
7.
The retrospective forecast skill of three coupled climate models (NCEP CFS, GFDL CM2.1, and CAWCR POAMA 1.5) and their multi-model ensemble (MME) is evaluated, focusing on the Northern Hemisphere (NH) summer upper-tropospheric circulation along with surface temperature and precipitation for the 25-year period of 1981–2005. The seasonal prediction skill for the NH 200-hPa geopotential height basically comes from the coupled models’ ability in predicting the first two empirical orthogonal function (EOF) modes of interannual variability, because the models cannot replicate the residual higher modes. The first two leading EOF modes of the summer 200-hPa circulation account for about 84% (35.4%) of the total variability over the NH tropics (extratropics) and offer a hint of realizable potential predictability. The MME is able to predict both spatial and temporal characteristics of the first EOF mode (EOF1) even at a 5-month lead (January initial condition) with a pattern correlation coefficient (PCC) skill of 0.96 and a temporal correlation coefficient (TCC) skill of 0.62. This long-lead predictability of the EOF1 comes mainly from the prolonged impacts of El Niño-Southern Oscillation (ENSO) as the EOF1 tends to occur during the summer after the mature phase of ENSO. The second EOF mode (EOF2), on the other hand, is related to the developing ENSO and also the interdecadal variability of the sea surface temperature over the North Pacific and North Atlantic Ocean. The MME also captures the EOF2 at a 5-month lead with a PCC skill of 0.87 and a TCC skill of 0.67, but these skills are mainly obtained from the zonally symmetric component of the EOF2, not the prominent wavelike structure, the so-called circumglobal teleconnection (CGT) pattern. In both observation and the 1-month lead MME prediction, the first two leading modes are accompanied by significant rainfall and surface air temperature anomalies in the continental regions of the NH extratropics. The MME’s success in predicting the EOF1 (EOF2) is likely to lead to a better prediction of JJA precipitation anomalies over East Asia and the North Pacific (central and southern Europe and western North America).  相似文献   
8.
We assess the ability of the Predictive Ocean Atmosphere Model for Australia (POAMA) to simulate and predict weekly rainfall associated with the MJO using a 27-year hindcast dataset. After an initial 2-week atmospheric adjustment, the POAMA model is shown to simulate well, both in pattern and in intensity, the weekly-mean rainfall variation associated with the evolution of the MJO over the tropical Indo-Pacific. The simulation is most realistic in December?CFebruary (austral summer) and least realistic in March?CMay (austral autumn). Regionally, the most problematic area is the Maritime Continent, which is a common problem area in other models. Coupled with our previous demonstration of the ability of POAMA to predict the evolution of the large-scale structure of the MJO for up to about 3?weeks, this ability to simulate the regional rainfall evolution associated with the MJO translates to enhanced predictability of rainfall regionally throughout much of the tropical Indo-Pacific when the MJO is present in the initial conditions during October?CMarch. We also demonstrate enhanced prediction skill of rainfall at up to 3?weeks lead time over the north-east Pacific and north Atlantic, which are areas of pronounced teleconnections excited by the MJO-modulation of tropical Indo-Pacific rainfall. Failure to simulate and predict the modulation of rainfall in such places as the Maritime Continent and tropical Australia by the MJO indicates, however, there is still much room for improvement of the prediction of the MJO and its teleconnections.  相似文献   
9.
The importance of initializing atmospheric intra-seasonal (stochastic) variations for prediction of the onset of the 1997/1998 El Ni?o is examined using the Australian Bureau of Meteorology coupled seasonal forecast model. A suite of 9-month forecasts was initialized on the 1st December 1996. Observed ocean initial conditions were used together with five different atmospheric initial conditions that sample a range of possible initial states of intra-seasonal (stochastic) variability, especially the Madden-Julian Oscillation (MJO), which is considered the primary stochastic variability of relevance to El Ni?o evolution. The atmospheric initial states were generated from a suite of atmosphere-only integrations forced by observed sea surface temperatures (SST). To the extent that low frequency variability of the tropical atmosphere is forced by slow variations in SST, these atmospheric states should all represent realistic low frequency atmospheric variability that was present in December 1996. However, to the extent that intra-seasonal variability is not constrained by SST, they should capture a range of intra-seasonal states, especially variations in the activity, phase and amplitude of the MJO. For each of these five states, a 20-member ensemble of coupled model forecasts was generated by the addition of small random perturbations to the SST field at the initial time. The ensemble mean from all five sets of forecasts resulted in El Ni?o but three of the sets produced substantially greater warming by months 4?C5 in the NINO3.4 region compared to the other two. The warmer group stemmed from stronger intra-seasonal westerly wind anomalies associated with the MJO that propagated eastward into the central Pacific during the first 1?C2?months of the forecast. These were largely absent in the colder group; the weakest of the colder group developed strong easterly wind anomalies, relative to the grand ensemble mean, that propagated into the central Pacific early in the forecast, thereby generating significantly weaker downwelling Kelvin waves in comparison to the warmer group. The strong reduction in downwelling Kelvin waves in the weakest case acted to limit the warming in the eastern Pacific, resulting in a ??Modoki?? type El Ni?o that is more focused in the central Pacific. Our results suggest that the intra-seasonal stochastic component of the atmospheric initial condition has an important and potentially predictable impact on the forecasts of the initial warming and flavour of the 1997/1998 El Ni?o. However, to the extent that atmospheric intra-seasonal variability is not predictable beyond a month or two, these results imply a limit to the accuracy with which the strength and perhaps the spatial distribution of an El Ni?o can ultimately be predicted. These results do not preclude a predictable role of the MJO and other intra-seasonal stochastic variability at longer lead times if some aspects of the stochastic variability are preconditioned by the evolving state of El Ni?o or other low frequency boundary forcing.  相似文献   
10.
Authigenic clays are an important control on reservoir quality in lacustrine carbonates but remain challenging to predict. Lacustrine depositional systems respond to climatic variations in rainfall, surface runoff and groundwater input, and evaporation, and result in rapid and frequent changes in lake volume; this is expressed through changing water depth and shoreline position. In the upper portion of the Early Palaeocene Yacoraite Formation of the Salta Basin in Argentina, extensive lacustrine deposits were deposited during the sag phase of rifting. Prior high-resolution stratigraphic studies have suggested that climatic factors control microbial carbonate sequences within a ‘balanced fill’ lake, with variation in the lake level having a major influence on facies association changes. This study characterizes the evolution of facies and mineralogy within the Yacoraite Formation, focusing on the distribution of clay minerals, making a link between the high, medium and low-frequency sequence stratigraphic cycles. The low-frequency transgressive hemicycle of the upper portion of the Yacoraite Formation is comprised of abundant siliciclastic facies, suggesting a wetter period. Microbialites occurring in this interval are coarse-grained and agglutinated. Detrital clay minerals such as illite and chlorite and associated siliciclastic sediments were input to the lake during high-frequency transgressive periods. During high-frequency regressive hemicycles, sedimentation was dominated by carbonate facies with Ca-rich dolomite and the authigenic clays are comprised of chlorite/smectite mixed-layers. By contrast, the low frequency regressive hemicycle records fine-grained agglutinated microbialite with horizons of fibrous calcite, more stoichiometric dolomite, barite and authigenic magnesian smectite. This indicates elevated ion concentrations in the lake under intense evaporation during an arid period. Understanding the conditions that are favourable for formation and preservation of authigenic clays within the lacustrine environment can improve understanding of reservoir quality in comparable economically important deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号