首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   53篇
  国内免费   11篇
测绘学   30篇
大气科学   183篇
地球物理   250篇
地质学   438篇
海洋学   38篇
天文学   122篇
综合类   6篇
自然地理   54篇
  2023年   6篇
  2022年   2篇
  2021年   26篇
  2020年   27篇
  2019年   25篇
  2018年   38篇
  2017年   30篇
  2016年   61篇
  2015年   46篇
  2014年   62篇
  2013年   80篇
  2012年   61篇
  2011年   75篇
  2010年   60篇
  2009年   70篇
  2008年   59篇
  2007年   45篇
  2006年   55篇
  2005年   47篇
  2004年   31篇
  2003年   24篇
  2002年   25篇
  2001年   20篇
  2000年   15篇
  1999年   18篇
  1998年   14篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有1121条查询结果,搜索用时 15 毫秒
1.
Based on the high abundance of fine‐grained material and its dark appearance, NWA 11024 was recognized as a CM chondrite, which is also confirmed by oxygen isotope measurements. But contrary to known CM chondrites, the typical phases indicating aqueous alteration (e.g., phyllosilicates, carbonates) are missing. Using multiple analytical techniques, this study reveals the differences and similarities to known CM chondrites and will discuss the possibility that NWA 11024 is the first type 3 CM chondrite. During the investigation, two texturally apparent tochilinite–cronstedtite intergrowths were identified within two thin sections. However, the former phyllosilicates were recrystallized to Fe‐rich olivine during a heating event without changing the textural appearance. A peak temperature of 400–600 °C is estimated, which is not high enough to destroy or recrystallize calcite grains. Thus, calcites were never constituents of the mineral paragenesis. Another remarkable feature of NWA 11024 is the occurrence of unknown clot‐like inclusions (UCLIs) within fine‐grained rims, which are unique in this clarity. Their density and S concentration are significantly higher than of the surrounding fine‐grained rim and UCLIs can be seen as primary objects that were not formed by secondary alteration processes inside the rims. Similarities to chondritic and cometary interplanetary dust particles suggest an ice‐rich first‐generation planetesimal for their origin. In the earliest evolution, NWA 11024 experienced the lowest degree of aqueous alteration of all known CM chondrites and subsequently, a heating event dehydrated the sample. We suggest to classify the meteorite NWA 11024 as the first type 3 CM chondrite similar to the classification of CV3 chondrites (like Allende) that could also have lost their matrix phyllosilicates by thermal dehydration.  相似文献   
2.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   
3.
Natural Hazards - Drawing on interviews with Cambodian and Thai communities in Auckland, New Zealand, this paper examines the role of Buddhist temples in disaster preparedness, response and...  相似文献   
4.
Four field campaigns are carried out to quantify the methane (CH4) oxidation rate in Xiangxi Bay (XXB) of the Three Gorges Reservoir (TGR), China. The water depth of the sampling site varied from 13 to 30 m resulting from the water level fluctuation of the TGR. The CH4 oxidation rates are measured in situ as the decline of dissolved CH4 concentration versus time in incubated, and those rates. The CH4 oxidation rates range from 1.18 × 10?3 to 3.69 × 10?3 µmol L?1 h?1, with higher values and stronger variation during summer. A static floating chamber method is used to measure CH4 emitted to the atmosphere resulting in an annual mean flux of 4.79 µmol m?2 h?1. The CH4 emission rate is significantly negatively correlated with the water level. The results show that a large fraction of CH4 is consumed in the water column with a range of 28.97–55.90 µmol m?2 h?1, accounting for ≈69–98% of the total CH4 input into the water column, and more than 90% is consumed outside the summer, when the water level is lowest. Water depth, which is dominated by water level of the TGR, is a potentially important driver for CH4 oxidation and atmospheric emission in the tributary bay.  相似文献   
5.
6.
We investigate magnetic phase (trans)formation in the presence of petroleum hydrocarbons and its relation to bacterial activity, in particular in the zone of remediation driven fluctuating water levels at a former military air base in the Czech Republic. In a previous study an increase of magnetite concentration from the groundwater table towards the top of the groundwater fluctuation zone (GWFZ) was reported, however with limited reliability as there was no control on small-scale effects. To recognize statistically significant magnetic signatures versus depth, we obtained multiple sediment cores from three locations in January 2011 and April 2012, penetrating the unsaturated zone, the GWFZ and the uppermost one meter below the groundwater level (~2.3 m depth at the time of sampling). Magnetic concentration variation versus depth was determined by measuring magnetic susceptibility (MS) and remanence parameters. Small-scale features were identified and eliminated by statistical processing of multiple cores. A trend of increasing MS values from the lowermost position of the groundwater table upward was verified and highest magnetic concentration was found at the top of the GWFZ. Magnetic mineralogy indicates that newly formed fine-grained magnetite in the single domain to small pseudo-single domain range is responsible for the MS enhancement confirming previous results. There is no correlation with the depth variation of hydrocarbon (HC) concentrations; however, total organic carbon is linked to MS and may represent a degradation product of HC that is bioavailable for microorganisms. Bacterial activity is likely responsible for magnetite formation as indicated by most probable number (MPN) results of iron-metabolizing bacteria. The comparison of our results with an earlier study conducted at the same site revealed that magnetic concentration clearly decreased since remediation was terminated in 2008, possibly due to dissolution of magnetite.  相似文献   
7.
Stress variation and fluid migration occur in deformation zones, which are expected to affect seismic waves reflected off or propagating across such structures. We developed a basic experimental approach to monitor the mechanical coupling with respect to seismic coupling across a single discontinuity between a granite sample in contact with a steel platen. Piezoceramics located on the platen were used to both generate and record the P and S wave fields reflected off the discontinuity at normal incidence. This way, normal (B n ) and tangential (B t ) compliances were calculated using Schoenberg’s linear slip theory (Schoenberg, J Acoust Soc Am 68:1516–1521, 1980) when the roughness, the effective pressure (P eff, up to 200 MPa), and the nature of the filling (gas or water) vary. We observe that increasing the effective pressure decreases B n and B t , which is interpreted as the effect of the closure of the voids at the interface, permitting more seismic energy to be transmitted across the interface. Values of B n are significantly higher than those of B t at low P eff (<60–80 MPa) in dry conditions, and significantly drop under water-saturated conditions. The water filling the voids therefore helps to transmit the seismic energy of compressional waves across the interface. These results show that the assumption B n  ≈ B t commonly found in some theoretical approaches does not always stand. The ratio B n /B t actually reflects the type of saturating fluids and the effective pressure, in agreement with other experimental studies. However, we illustrate that only the relative variations of this ratio seem to be relevant, not its absolute value as suggested in previous studies. Consequently, the use of B n against B t plots may allow effective pressure variation and the nature of the pore fluid to be inferred. In this respect, this experimental approach at sample scale helps to pave the way for remotely monitoring in the field the hydro-mechanical state of deformation zones, such as seismogenic faults, fractured reservoirs, or lava conduits.  相似文献   
8.
Estuaries act as an organic matter and nutrient filter in the transition between the land, rivers and the ocean. In the past, high nutrient and organic carbon load and low oxygen concentration made the Elbe River estuary (NW Europe) a sink for dissolved inorganic nitrogen. A recent reduction in loads and subsequent recovery of the estuary changed its biogeochemical function, so that nitrate is no longer removed on its transition towards the coastal North Sea. Nowadays in the estuary, nitrification appears to be a significant nitrate source. To quantify nitrification and determine actively nitrifying regions in the estuary, we measured the concentrations of ammonium, nitrite and nitrate, the dual stable isotopes of nitrate and net nitrification rates in the estuary on five cruises from August 2012 to August 2013. The nitrate concentration increased markedly downstream of the port of Hamburg in summer and spring, accompanied by a decrease of nitrate isotope values that was clearest in summer exactly at the location where nitrate concentration started to increase. Ammonium and nitrite peaked in the Hamburg port region (up to 18 and 8 μmol L?1, respectively), and nitrification rates in this region were up to 7 μmol L?1 day?1. Our data show that coupled re-mineralization and nitrification are significant internal nitrate sources that almost double the estuary’s summer nitrate concentration. Furthermore, we find that the port of Hamburg is a hot spot of nitrification, whereas the maximum turbidity zone (MTZ) only plays a subordinate role in turnover of nitrate.  相似文献   
9.
A first palynostratigraphic scheme of Upper Triassic deposits in northern Switzerland was established based on spore-pollen associations and dinoflagellate cyst records from the upper part of the Upper Triassic Klettgau Formation and the lower part of the Lower Jurassic Staffelegg Formation. Drill cores from the Adlerberg region (Basel Tabular Jura) and from Weiach (northern part of Canton Zurich) as well as from an outcrop at the Chilchzimmersattel (Basel Folded Jura) were studied and five informal palynological associations are distinguished. These palynological associations correlate with palynological association of the Central European Epicontinental Basin and the Tethyan realm and provide a stratigraphic framework for the uppermost Triassic sediments in northern Switzerland. Throughout the uppermost Triassic to Jurassic palynological succession a remarkable prominence of Classopollis spp. is observed. Besides Classopollis spp. the three Rhaetian palynological associations A to C from the Upper Triassic Belchen Member include typical Rhaetian spore-pollen and dinoflagellate taxa (e.g., Rhaetipollis germanicus, Geopollis zwolinskae, Rhaetogonyaulax rhaetica, and Dapcodinium priscum). Association B differs from association A in a higher relative abundance of the sporomorph taxa Perinopollenites spp. and the consistent occurrence of Granuloperculatipollis rudis and Ricciisporites tuberculatus. Spore diversity is highest in the late Rhaetian palynological association C and includes Polypodiisporites polymicroforatus. A Rhaetian age for the Belchen Member is confirmed by palynological associations A–C, but there is no record of the latest Rhaetian and the earliest Jurassic. In contrast to the Rhaetian palynological associations the Early Jurassic associations W and D include Pinuspollenites spp., Trachysporites fuscus (in association W), and Ischyosporites variegatus. In the view of the end-Triassic mass extinction and contemporaneous environmental changes the described palynofloral succession represents the pre-extinction phase (associations A and B) including a distinct transgression, the extinction phase (association C) associated with a regression, and the post-extinction phase (association W).  相似文献   
10.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10065-y  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号