首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
大气科学   20篇
地球物理   3篇
  2022年   1篇
  2017年   2篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有23条查询结果,搜索用时 968 毫秒
1.
An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer   总被引:2,自引:27,他引:2  
Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.  相似文献   
2.
The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, having a significant impact on medium-range weather forecasts and climate integrations. To pursue this further, a moderately stratified Arctic case is simulated by nineteen single-column turbulence schemes. Statistics from a large-eddy simulation intercomparison made for the same case by eleven different models are used as a guiding reference. The single-column parameterizations include research and operational schemes from major forecast and climate research centres. Results from first-order schemes, a large number of turbulence kinetic energy closures, and other models were used. There is a large spread in the results; in general, the operational schemes mix over a deeper layer than the research schemes, and the turbulence kinetic energy and other higher-order closures give results closer to the statistics obtained from the large-eddy simulations. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.  相似文献   
3.
Atmospheric numerical models depend critically on realistic treatment of the lower boundary conditions. In strongly thermally-stratified conditions, turbulence may be very weak and the models may find it difficult to produce a good forecast near the surface. Under clear skies and for weak synoptic winds the determining factors are the turbulent kinetic energy and surface-layer parameterizations, which can be very different between models. Here, two state-of-the-art mesoscale models (MM5 and Meso-NH) are operated under exactly the same conditions for two different nights over the Duero basin in the Iberian Peninsula: one night with a well-defined synoptic wind and a second with practically no horizontal pressure gradient. The models are inter-compared and checked against available information, and their performances are evaluated.  相似文献   
4.
The simplified hydraulic two-layer model for a katabatic flow is analysed using the outputs from a high-resolution mesoscale simulation. A stably stratified night is simulated for the Duero basin, a complex terrain area located in the northern Spanish plateau, with large vertical and horizontal spatial resolution. Well-defined katabatic flows on the basin slopes are generated by the simulation, that are relatively stationary and quasi-bidimensional for some areas in the central part of the night. The bulk quantities used in the two-layer approach as well as the different terms in the equations are computed from the three-dimensional information provided by the mesoscale simulation. This method allows to inspect how well the simplified approach represents the katabatic flow generated by the mesoscale model. The study shows that the hydraulic model allows for a comprehensive analysis of the basic mechanisms of the slope flows but is not able to close the budget equations, since the residuals are large.  相似文献   
5.
Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report   总被引:1,自引:1,他引:0  
This paper describes the Stable AtmosphericBoundary Layer Experiment in Spain (SABLES 98),which took place over the northern Spanish plateaucomprising relatively flat grassland,in September 1998. The main objectives of the campaign were to study the properties of themid-latitude stable boundary layer (SBL).Instrumentation deployed on two meteorologicalmasts (of heights 10 m and 100 m)included five sonic anemometers, 15 thermocouples,five cup anemometers and three propeller anemometers,humidity sensors and radiometers.A Sensitron mini-sodar and a tetheredballoon were also operated continuously. Atriangular array of cup anemometers wasinstalled to allow the detection ofwave events. Two nocturnal periods analysedon 14–15 and 20–21 September are used toillustrate the wide-ranging characteristics of the SBL.  相似文献   
6.
Large basins with relatively wide floors experience heterogeneous nocturnal cooling due to the diversity of the topography and the land use within the basin. Near mountain ranges the drainage flows prevail, but in low areas, river valleys or embedded plateaux, the actual rates of cooling differ as does the behaviour of the local flows in the first few metres above the surface. In this study, the temporal and spatial heterogeneity of the surface cooling is inspected through the analysis of satellite radiative surface temperature, data from a meteorological network and a tall tower. The organisation of the flow within the basin is also studied by means of a high-resolution numerical mesoscale simulation. Although the basin cools almost as a unit, there exists a large diversity of local regimes. Vertical profiles from the mesoscale simulation are analysed and grouped according to their wind structure and stratification.  相似文献   
7.
During the CASES-99 field experiment, three quartz-based microbarographs were installed on the 58-m main tower at the Central Site. These devices measuredabsolute pressure with temperature compensated output at a resolution better than 0.2 Pa and a sampling frequency of 2 s-1 during the whole campaign. This sampling rate is not adequate to compute turbulent pressure fluxes with the classic averaging method, but the wavelet transform allows flux estimations at a wide range of scales. The resolution of the devices is suitable to study pressure perturbations such as internal gravity waves. The night period of the Intensive Operational Period number 6 (IOP6), where wave-like structures were present, is chosen to illustrate the method. A complete wavelet analysis of pressure recordsand data from sonic anemometers located at the same heights in the tower is performed. Wavelet methods make it possible to identify the relevant scales in the flowand to study the vertical structure of pressure perturbations, including coherent structures and small-scale motions.A study of a simplified turbulence kinetic energy budget equation is made and the contribution of the pressure terms is discussed.  相似文献   
8.
We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today??s numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.  相似文献   
9.
The Ebro river basin, in the northeastern part of the Iberian Peninsula in Europe, very often experiences radiation fog episodes in winter that can last for several days. The impact on human activities is high, especially on road and air transportation. The installation in July 2009 of a WindRASS in the area, which is able to work in the presence of fog, now allows inspecting the vertical structure of the temperature and wind profiles across the roughly 300-m-thick fog layer. We present a case study of a long-lasting (60 h) deep radiation fog that took place in December 2009 to obtain a deeper understanding of the dynamic processes governing such persistent fog. Field observations of vertical profiles of temperature, wind and turbulent kinetic energy are compared with a high-resolution mesoscale simulation, satellite imagery of fog distribution and observations taken in the area to understand why the fog is so persistent and how it dissipates only for a short period in the afternoon despite intermittent turbulence within the fog deck. The confinement of the fog inside a practically closed basin allows us to study the relevant physical processes in the establishment and subsequent evolution of the fog episode using a limited-area mesoscale model. The contribution of the WindRASS measurements allowed us to validate the numerical simulations, particularly inspecting the role of turbulence that can link the bottom and top of the fog through moderate episodic mixing. The fog layer has very weak winds inside, but is well mixed and experiences intermittent top-bottom turbulence generated in its upper part by convection due to radiative cooling and by wind shear due to the topographically generated flows that blow just above the top of the fog.  相似文献   
10.
The availability of well-calibrated meteorological data for a 10-month period on a 100-m tower has allowed a statistical study to be carried out of many boundary-layer variables. The analyses are restricted to nighttime conditions with stable stratification most of the time, allowing the checking of a number of similarity proposals and the quantifying of the frequency of the different nighttime regimes. We study in detail two typical nights at the site: one weakly stable and one with very strong stratification, highlighting the different aspects between the nights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号