首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
测绘学   1篇
大气科学   4篇
地球物理   5篇
地质学   36篇
海洋学   1篇
天文学   1篇
自然地理   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有49条查询结果,搜索用时 37 毫秒
1.
Oxfordian reefal episodes of Lorraine and Burgundy have a long time been considered as contemporaneous. Biostratigraphic data and sequential evolutions peculiar to each region indicate their structural autonomy during Oxfordian times. A north‐south‐oriented well‐logging transect shows that, during the Middle Oxfordian, a shallow reefal platform developed in Lorraine while thin deeper deposits occurred in Burgundy. In spite of their different ages, reefal episodes of Middle Oxfordian in Lorraine and Upper Oxfordian in Burgundy exhibit a broadly similar vertical evolution of coral communities. During the Late Oxfordian, the contemporaneous occurrence of a diversified assemblage in the Burgundy region, a colder coral assemblage characterized by eurytopic genera and the decrease in seawater isotopic temperatures in Lorraine can be explained by a shift in trophic conditions, a climatic change related to structural rearrangements in this strategic place and a modification of oceanic circulations between the arctic and the Tethyan regions.  相似文献   
2.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   
3.
Calcareous hornfelses and marbles all contain calcite+K-feldspar+quartz+sphene±diopside±plagioclase ±scapolite±clinozoisite. In addition, rocks on one side of a fault contain combinations of biotite, amphibole, and muscovite while those on the other side contain combinations of grossular, wollastonite, and axinite. At bars, mineral-fluid equilibria in biotite and amphibole-bearing rocks record T= 440° C and garnet-bearing rocks record T=540° C and Conventional volumetric fluid-rock ratios were calculated using measured progress of prograde decarbonation reactions and the conditions of metamorphism: marbles, 0–0.4; amphibole-bearing hornfelses, 1.0–1.4; garnet-bearing hornfelses, 2.8–6.7. Decarbonation reactions were driven by pervasive infiltration of rock by reactive aqueous fluids. Differences in fluid-rock ratio between interbedded marble and hornfels and lack of correlation between fluid-rock ratio and whole-rock Cl-content, however, argue for channelized fluid flow along lithologic layers. A new analysis of reaction progress allows estimation of time-integrated fluxes for a specified temperature gradient along the direction of flow. Results are: marbles, 0–0.1×105 cm3/cm2; amphibole-bearing hornfelses, 0.8–1.3×105 cm3/cm2; garnet-bearing hornfelses, 1.2–2.5 × 105 cm3/cm2. Fluid flowed from regions of low to regions of high temperature. Using a simple thermal model for the area, the duration of contact metamorphism was estimated as 105 years. Assuming the time of fluid flow was the same as the duration of the thermal event, the first measurements of average metamorphic fluxes (q) and permeabilities (k) are: average marbles, q=0–0.3×10–8 cm/s and k =2×10–6 darcy; hornfels, q=3–8×10–8 cm/s and k =20–53×10–6 darcy. Estimated premeabilities are within the range of values measured for metamorphic rocks in the laboratory. Fluxes, permeabilities, and whole-system fluidrock ratios are similar to those estimated for the Skaergaard hydrothermal system by Norton and Taylor (1979).  相似文献   
4.
5.
Hydrothermal alteration of Tertiary gabbros from Skye involved the reaction of igneous olivine, augite, hypersthene, plagioclase, magnetite, and ilmenite with aqueous fluid primarily to combinations of talc, chlorite, montmorillonite, calcic amphibole, biotite, and secondary magnetite. Lesser amounts of calcite, epidote, quartz, sphene, prehnite, and garnet also developed. During mineralogical alteration of gabbro there was a net addition to rock of K, Na, Sr, and H2O and a net loss of Mg. Gabbro was oxidized early in the hydrothermal event and later reduced. Iron and silicon were probably initially lost and later added. There is no evidence for significant change in the Al or Ca content of the gabbros. Hydrothermal alteration of Skye gabbro involved not only large-scale migration of 18O, 16O, D and H but also of K, Na, Sr, Mg, and probably Fe and Si.Mineral thermometry indicates that pyroxenes in the gabbros crystallized at 1000° C–1150° C and were very resistent chemically as well as isotopically to later hydrothermal alteration. Hypothetical equilibrium between primary and secondary mafic silicates suggests that mineralogical alteration of gabbro occurred at 450°–550° C. The lack of correlation between mineralogical and isotopic alteration of gabbro requires that much isotopic alteration occurred at temepratures above those at which the secondary minerals developed, 550°–1000° C. The chemical alteration of gabbro is correlated with its mineralogical alteration and therefore occurred at 450°–550° C.Measured progress of the mineral-fluid reactions was used to estimate the amount of H2O fluid that infiltrated the gabbro as primary olivine was converted to talc+magnetite at 525°–550° C. Calculated fluid-rock ratios are in the range 0.2–6 (volume basis) and are smaller than values estimated from isotopic data (fluid/rock 1–10, volume basis). Both isotopic and petrologic data point to pervasive flow of fluid through crystalline rock at elevated temperatures of 500°–1000° C. Isotopic fluid-rock ratios are larger than petrologic fluid-rock ratios because isotopic alteration of cooling gabbro began earlier and at higher temperatures than did the mineralogical alteration.  相似文献   
6.
Crystal size distributions (CSDs) measured in metamorphic rocks yield quantitative information about crystal nucleation and growth rates, growth times, and the degree of overstepping (T) of reactions during metamorphism. CSDs are described through use of a population density function n=dN/dL, where N is the cumulative number of crystals per unit volume and L is a linear crystal size. Plots of ln (n) vs. L for olivine+pyroxene and magnetite in high-temperature (1000° C) basalt hornfelses from the Isle of Skye define linear arrays, indicating continuous nucleation and growth of crystals during metamorphism. Using the slope and intercept of these linear plots in conjunction with growth rate estimates we infer minimum mineral growth times of less than 100 years at T<10° C, and nucleation rates between 10–4 and 10–1/cm3/s. Garnet and magnetite in regionally metamorphosed pelitic schists from south-central Maine have CSDs which are bell-shaped. We interpret this form to be the result of two processes: 1) initial continuous nucleation and growth of crystals, and 2) later loss of small crystals due to annealing. The large crystals in regional metamorphic rocks retain the original size frequency distribution and may be used to obtain quantitative information on the original conditions of crystal nucleation and growth. The extent of annealing increases with increasing metamorphic grade and could be used to estimate the duration of annealing conditions if the value of a rate constant were known. Finally, the different forms of crystal size distributions directly reflect differences in the thermal histories of regional vs. contact metamorphosed rocks: because contact metamorphism involves high temperatures for short durations, resulting CSDs are linear and unaffected by annealing, similar to those produced by crystallization from a melt; because regional metamorphism involves prolonged cooling from high temperatures, primary linear CSDs are later modified by annealing to bell shapes.  相似文献   
7.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   
8.
Résumé

Une analyse de séries sédimentaires d’âge Crétacé supérieur dans le Sud-Est de la France a été entreprise et intégrée dans un cadre de stratigraphie séquentielle. Les limites Cénomanien–Turonien et la limite Turonien–Coniacien sont marquées par des variations rapides et de fortes amplitudes du niveau marin relatif. La comparaison effectuée avec d’autres bassins mondiaux nous amène à envisager le problème dans un cadre global. On constate : (1) le synchronisme d’événements à haute fréquence dans des contextes géodynamiques différents. (2) les effets de la superposition de cycles eustatiques hiérarchiquement différents, c’est-à-dire la superposition d’oscillations à haute fréquence sur une composante de 3e ordre. Ces observations sont confrontées à deux hypothèses : le glacio-eustatisme et la tectonique à haute fréquence. © Elsevier, Paris.  相似文献   
9.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   
10.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号