首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
大气科学   1篇
地球物理   8篇
地质学   1篇
天文学   3篇
  2021年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2004年   1篇
  2003年   1篇
  1998年   2篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   
2.
3.
Testing the relative performances of the single ring pressure infiltrometer (PI) and simplified falling head (SFH) techniques to determine the field saturated soil hydraulic conductivity, Kfs, at the near point scale may help to better establish the usability of these techniques for interpreting and simulating hydrological processes. A sampling of 10 Sicilian sites showed that the measured Kfs was generally higher with the SFH technique than the PI one, with statistically significant differences by a factor varying from 3 to 192, depending on the site. A short experiment with the SFH technique yielded higher Kfs values because a longer experiment with the PI probably promoted short‐term swelling phenomena reducing macroporosity. Moreover, the PI device likely altered the infiltration surface at the beginning of the run, particularly in the less stable soils, where soil particle arrangement may be expected to vary upon wetting. This interpretation was supported by a soil structure stability index, SSI, and also by the hydraulic conductivity data obtained with the tension infiltrometer, i.e. with a practically negligible disturbance of the sampled soil surface. In particular, a statistically significant, increasing relationship with SSI and an unsaturated conductivity greater than the saturated one were only detected for the Kfs data obtained with the PI. The SFH and PI techniques should be expected to yield more similar results in relatively rigid porous media (low percentages of fine particles and structurally stable soils) than in soils that modify appreciably their particle arrangement upon wetting. The simultaneous use of the two techniques may allow to improve Kfs determination in soils that change their hydrodynamic behaviour during a runoff producing rainfall event. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
Compact groups are association of 4-8 galaxies with high spatial densities (Δρ/ρ∼10–20), but low velocity dispersion. Galaxy-galaxy interactions (e.g. close tidal encounters or mergers) are therefore likely to dominate any environmentally-dependent evolution of galaxies in these compact, highlocal-density, groups, unlike in the field, where galaxy densities are too low, and in clusters, where relative velocities are too high. We present here the results from spectroscopic and photometric observations of a new sample of compact groups in the Southern Sky, selected by an automatic detection algorithm applied to a digitized galaxy database. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
Iovino  Maria  Di Laora  Raffaele  de Sanctis  Luca 《Acta Geotechnica》2021,16(12):3963-3973
Acta Geotechnica - Pile foundations supporting tall structures, such as wind turbines, chimneys, silos, elevated water tanks or bridge piers, are subjected during their life span to remarkably...  相似文献   
6.
Field‐saturated soil hydraulic conductivity, Kfs, is highly variable. Therefore, interpreting and simulating hydrological processes, such as rainfall excess generation, need a large number of Kfs data even at the plot scale. Simple and reasonably rapid experiments should be carried out in the field. In this investigation, a simple infiltration experiment with a ring inserted shortly into the soil and the estimation of the so‐called α* parameter allowed to obtain an approximate measurement of Kfs. The theoretical approach was tested with reference to 149 sampling points established on Burundian soils. The estimated Kfs with the value of first approximation of α* for most agricultural field soils (α* = 0.012 mm?1) differed by a practically negligible maximum factor of two from the saturated conductivity obtained by the complete Beerkan Estimation of Soil Transfer parameters (BEST) procedure for soil hydraulic characterization. The measured infiltration curve contained the necessary information to obtain a site‐specific prediction of α*. The empirically derived α* relationship gave similar results for Kfs (mean = 0.085 mm s?1; coefficient of variation (CV) = 71%) to those obtained with BEST (mean = 0.086 mm s?1; CV = 67%), and it was also successfully tested with reference to a few Sicilian sampling points, since it yielded a mean and a CV of Kfs (0.0094 mm s?1 and 102%, respectively) close to the values obtained with BEST (mean = 0.0092 mm s?1; CV = 113%). The developed method appears attractive due to the extreme simplicity of the experiment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ° horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This “eddy-permitting” resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.  相似文献   
8.
The repellency index (RI) defined as the adjusted ratio between soil‐ethanol, Se, and soil‐water, Sw, sorptivities estimated from minidisk infiltrometer experiments has been used instead of the widely used water drop penetration time and molarity of ethanol drop tests to assess soil water repellency. However, sorptivity calculated by the usual early‐time infiltration equation may be overestimated as the effects of gravity and lateral capillary are neglected. With the aim to establish the best applicative procedure to assess RI, different approaches to estimate Se and Sw were compared that make use of both the early‐time infiltration equation (namely, the 1 min, S1, and the short‐time linearization approaches), and the two‐term axisymmetric infiltration equation, valid for early to intermediate times (namely, the cumulative linearization and differentiated linearization approaches). The dataset included 85 minidisk infiltrometer tests conducted in three sites in Italy and Spain under different vegetation habitats (forest of Pinus pinaster and Pinus halepensis, burned pine forest, and annual grasses), soil horizons (organic and mineral), postfire treatments, and initial soil water contents. The S1 approach was inapplicable in 42% of experiments as water infiltration did not start in the first minute. The short‐time linearization approach yielded a systematic overestimation of Se and Sw that resulted in an overestimation of RI by a factor of 1.57 and 1.23 as compared with the cumulative linearization and differentiated linearization approaches. A new repellency index, RIs, was proposed as the ratio between the slopes of the linearized data for the wettable and hydrophobic stages obtained by a single water infiltration test. For the experimental conditions considered, RIs was significantly correlated with RI and WDPT. Compared with RI, RIs includes information on both soil sorptivity and hydraulic conductivity and, therefore, it can be considered more physically linked to the hydrological processes affected by soil water repellency.  相似文献   
9.
Testing infiltrometer techniques to determine soil hydraulic properties is necessary for specific soils. For a loam soil, the water retention and hydraulic conductivity predicted by the BEST (Beerkan Estimation of Soil Transfer parameters) procedure of soil hydraulic characterization was compared with data collected by more standard laboratory and field techniques. Six infiltrometer techniques were also compared in terms of saturated soil hydraulic conductivity, Ks. BEST yielded water retention values statistically similar to those obtained in the laboratory and Ks values practically coinciding with those determined in the field with the pressure infiltrometer (PI). The unsaturated soil hydraulic conductivity measured with the tension infiltrometer (TI) was reproduced satisfactorily by BEST only close to saturation. BEST, the PI, one‐potential experiments with both the TI and the mini disk infiltrometer (MDI), the simplified falling head (SFH) technique and the bottomless bucket (BB) method yielded statistically similar estimates of Ks, differing at the most by a factor of three. Smaller values were obtained with longer and more soil‐disturbing infiltration runs. Any of the tested infiltration techniques appears usable to obtain the order of magnitude of Ks at the field site, but the BEST, BB and PI data appear more appropriate to characterize the soil at some stage during a rainfall event. Additional investigations on both similar and different soils would allow development of more general procedures to apply infiltrometer techniques for soil hydraulic characterization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
Saturated soil hydraulic conductivity, K s , data collected by ponding infiltrometer methods and usual experimental procedures could be unusable for interpreting field hydrological processes and particularly rainfall infiltration. The K s values determined by an infiltrometer experiment carried out by applying water at a relatively large distance from the soil surface could however be more appropriate to explain surface runoff generation phenomena during intense rainfall events. In this study, a link between rainfall simulation and ponding infiltrometer experiments was established for a sandy‐loam soil. The height of water pouring for the infiltrometer run was chosen, establishing a similarity between the gravitational potential energy of the applied water, E p , and the rainfall kinetic energy, E k . To test the soundness of this procedure, the soil was sampled with the Beerkan estimation of soil transfer parameters procedure of soil hydraulic characterization and two heights of water pouring (0.03 m, i.e., usual procedure, and 0.34 m, yielding E p  = E k ). Then, a comparison between experimental steady‐state infiltration rates, i sR , measured with rainfall simulation experiments determining runoff production and K s values for the two water pouring heights was carried out in order to discriminate between theoretically possible (i sR  ≥ K s ) and impossible (i sR  < K s ) situations. Physically possible K s values were only obtained by applying water at a relatively large distance from the soil surface, because i sR was equal to 20.0 mm h?1 and K s values were 146.2–163.9 and 15.2–18.7 mm h?1 for a height of water pouring of 0.03 and 0.34 m, respectively. This result suggested the consistency between Beerkan runs with a high height of water pouring and rainfall simulator experiments. Soil compaction and mechanical aggregate breakdown were the most plausible physical mechanisms determining reduction of K s with height. This study demonstrated that the height from which water is poured onto the soil surface is a key parameter in infiltrometer experiments and can be adapted to mimic the effect of high intensity rain on soil hydraulic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号