排序方式: 共有13条查询结果,搜索用时 657 毫秒
1.
Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions 总被引:4,自引:0,他引:4
Yaodeng Chen Syed R. H. Rizvi Xiang-Yu Huang Jinzhong Min Xin Zhang 《Meteorology and Atmospheric Physics》2013,121(1-2):79-98
For variational data assimilation, the background error covariance matrix plays a crucial role because it is strongly linked with the local meteorological features, and is especially dominated by error correlations between different analysis variables. Multivariate background error (MBE) statistics have been generated for two regions, namely the Tropics (covering Indonesia and its neighborhood) and the Arctic (covering high latitudes). Detailed investigation has been carried out for these MBE statistics to understand the physical processes leading to the balance (defined by the forecasts error correlations) characteristics between mass and wind fields for the low and high latitudes represented by these two regions. It is found that in tropical regions, the unbalanced (full balanced) part of the velocity potential (divergent part of wind) contributes more to the balanced part of the temperature, relative humidity, and surface pressure fields as compared with the stream function (rotational part of wind). However, the exact opposite happens in the Arctic. For both regions, the unbalanced part of the temperature field is the main contributor to the balanced part of the relative humidity field. Results of single observation tests and six-hourly data assimilation cycling experiments are consistent with the respective balance part contributions of different fields in the two regions. This study provides an understanding of the contrasting dynamical balance relationship that exists between the mass and wind fields in high- and low-latitude regions. The study also examines the impact of MBE on Weather Research and Forecasting model forecasts for the two regions. 相似文献
2.
Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones 总被引:2,自引:0,他引:2
Dongmei Xu Zhiquan Liu Xiang-Yu Huang Jinzhong Min Hongli Wang 《Meteorology and Atmospheric Physics》2013,122(1-2):1-18
The impact of assimilating Infrared Atmospheric Sounding Interferometer (IASI) radiance observations on the analyses and forecasts of Hurricane Maria (2011) and Typhoon Megi (2010) is assessed using Weather Research and Forecasting Data Assimilation (WRFDA). A cloud-detection scheme (McNally and Watts 2003) was implemented in WRFDA for cloud contamination detection for radiances measured by high spectral resolution infrared sounders. For both Hurricane Maria and Typhoon Megi, IASI radiances with channels around 15-μm CO2 band had consistent positive impact on the forecast skills for track, minimum sea level pressure, and maximum wind speed. For Typhoon Megi, the error reduction appeared to be more pronounced for track than for minimum sea level pressure and maximum wind. The sensitivity experiments with 6.7-μm H2O band were also conducted. The 6.7-μm band also had some positive impact on the track and minimum sea level pressure. The improvement for maximum wind speed forecasts from the 6.7-μm band was evident, especially for the first 42 h. The 15-μm band consistently improved specific humidity forecast and we found improved temperature and horizontal wind forecast on most levels. Generally, assimilating the 6.7-μm band degraded forecasts, likely indicating the inefficiency of the current WRF model and/or data assimilation system for assimilating these channels. IASI radiance assimilation apparently improved depiction of dynamic and thermodynamic vortex structures. 相似文献
3.
4.
5.
In this paper, two seasonal scale simulations were conducted for the abnormal climate event in China in the summer of 1998 using a regional climate model (RegCM3). One is the control run, the other is nudging run, which was performed for zonal and meridional wind components, temperature, and humidity data for the region east of 120° E in the model domain to ensure that the simulated activity of western Pacific subtropical high (WPSH) in summer followed those of reanalysis data, while the interaction between the WPSH and the surrounding circulation systems was still maintained partially. Comparisons between the simulated regional circulation systems and the extension/withdrawal of the rain belt over eastern China as well as the activity of the WPSH were carried out. The results show that the relationship between the precipitation over eastern China and WPSH can be reproduced well in the nudging run. However, though the extension/withdrawal of the rain belt over eastern China is mainly dominated by that of WPSH, as pointed out by so many research works, the detailed precipitation scenario is not solely determined by the intensity and position of WPSH, and the precipitation discrepancy between simulation and observation is significant to some extent, which suggests that it is important to improve the precipitation physical process of the model in simulating the detailed precipitation scenario over eastern China. 相似文献
6.
A relocation procedure to initialize tropical cyclones was developed to improve the representation of the initial conditions and the track forecast for Panasonic Weather Solutions Tropical Operational Forecasts. This scheme separates the vortex perturbation and environment field from the first guess, then relocates the initial vortex perturbations to Lhe observed position by merging them with the environment field. The relationships of wind vector components with stream function and velocity potential are used for separating the vortex disturbance from first guess. For the separation of scalars, a low-pass Barnes filter is employed. The irregular-shaped relocation area corresponding to the specific initial conditions is determined by mapping the edge of the vortex radius in 36 directions.Then, the non-vortex perturbations in the relocation area are removed by a two-pass Barnes filter to retain the vortex perturbations, while the variable fields outside the perimeter of the modified vortex are kept ide.ntical to the original first guess. The potential impacts of this scheme on track forecasts were examined for three hurricane cases in the 2011-12 hurricane season. The experimental results demonstrate that the initialization scheme is able to effectively separate the vortex field from the environment field and maintain a relatively balanced and accurate relocated first guess. As the initial track error is reduced, the following track forecasts are considerably improved. The 72-h average track forecast error was redu,~ed by 32.6% for the cold-start cases, and by 38.4% when using the full-cycling data assimilation because of the accumulatedL improvements from the initialization scheme. 相似文献
7.
Qinglong You Klaus Fraedrich Frank Sielmann Jinzhong Min Shichang Kang Zhenming Ji Xiuhua Zhu Guoyu Ren 《Climate Dynamics》2014,43(5-6):1449-1462
Degree days are usually defined as the accumulated daily mean temperature varying with the base temperature, and are one of the most important indicators of climate changes. In this study, the present-day and projected changes of four degree days indices from daily mean surface air temperature output simulated by Max Planck Institute, Earth Systems Model of low resolution (MPI-ESM-LR) model are evaluated with the high resolution gridded-observation dataset and two modern reanalyses in China. During 1979–2005, the heating degree days (HDD) and the numbers of HDD (NHDD) have decreased for observation, reanalyses (ERA-Interim and NCEP/NCAR) and model simulations (historical and decadal experiments), consistent with the increasing cooling degree days (CDD) and the numbers of CDD (NCDD). These changes reflect the general warming in China during the past decades. In most cases, ERA-Interim is closer to observation than NCEP/NCAR and model simulations. There are discrepancies between observation, reanalyses and model simulations in the spatial patterns and regional means. The decadal hindcast/forecast simulation performance of MPI-ESM-LR produce warmer than the observed mean temperature in China during the entire period, and the hindcasts forecast a trend lower than the observed. Under different representative concentration pathway (RCP) emissions scenarios, HDD and NHDD show significant decreases, and CDD and NCDD consistently increase during 2006–2100 under RCP8.5, RCP4.5 and RCP2.6, especially before the mid-21 century. More pronounced changes occur under RCP8.5, which is associated with a high rate of radiative forcing. The 20th century runs reflect the sensitivity to the initial conditions, and the uncertainties in terms of the inter-ensemble are small, whereas the long-term trend is well represented with no differences among ensembles. 相似文献
8.
9.
An ensemble three-dimensional ensemble-variational(3DEnVar)data assimilation(E3DA)system was developed within the Weather Research and Forecasting model’s 3DVar framework to assimilate radar data to improve convective forecasting.In this system,ensemble perturbations are updated by an ensemble of 3DEnVar and the ensemble forecasts are used to generate the flow-dependent background error covariance.The performance of the E3DA system was first evaluated against one experiment without radar DA and one radar DA experiment with 3DVar,using a severe storm case over southeastern China on 5 June 2009.Results indicated that E3DA improved the quantitative forecast skills of reflectivity and precipitation,as well as their spatial distributions in terms of both intensity and coverage over 3DVar.The root-mean-square error of radial velocity from 3DVar was reduced by E3DA,with stronger low-level wind closer to observation.It was also found that E3DA improved the wind,temperature and water vapor mixing ratio,with the lowest errors at the surface and upper levels.3DVar showed moderate improvements in comparison with forecasts without radar DA.A diagnosis of the analysis revealed that E3DA increased vertical velocity,temperature,and humidity corresponding to the added reflectivity,while 3DVar failed to produce these adjustments,because of the lack of reasonable cross-variable correlations.The performance of E3DA was further verified using two convective cases over southern and southeastern China,and the reflectivity forecast skill was also improved over 3DVar. 相似文献
10.
The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager) for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR) and a hybrid ensemble-3DVAR method. The interface of assimilating the radiance for the sensor GMI was established in the Weather Research and Forecasting(WRF) model. The GMI radiance data are assimilated for Typhoon Matmo(2014), Typhoon Chan-hom(2015), Typhoon Meranti(2016), and Typhoon Mangkhut(2018) in the Pacific before their landing. The results show that after assimilating the GMI radiance data under clear sky condition with the 3DVAR method, the wind,temperature, and humidity fields are effectively adjusted, leading to improved forecast skills of the typhoon track with GMI radiance assimilation. The hybrid DA method is able to further adjust the location of the typhoon systematically. The improvement of the track forecast is even more obvious for later forecast periods. In addition, water vapor and hydrometeors are enhanced to some extent, especially with the hybrid method. 相似文献