首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   9篇
  国内免费   8篇
测绘学   6篇
大气科学   36篇
地球物理   86篇
地质学   104篇
海洋学   52篇
天文学   49篇
综合类   4篇
自然地理   12篇
  2022年   2篇
  2020年   6篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   14篇
  2015年   8篇
  2014年   10篇
  2013年   27篇
  2012年   15篇
  2011年   12篇
  2010年   6篇
  2009年   13篇
  2008年   7篇
  2007年   13篇
  2006年   16篇
  2005年   7篇
  2004年   11篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   5篇
  1996年   12篇
  1995年   18篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1988年   4篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   5篇
  1973年   2篇
  1971年   1篇
  1964年   1篇
  1929年   1篇
排序方式: 共有349条查询结果,搜索用时 46 毫秒
1.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
Accurate navigation forms an essential part of all research at sea and the deep ocean imposes it's own unique problems. This chapter discusses several of the techniques in current use on the research vessels of the Natural Environment Research Council (NERC), concentrating on those systems which provide global navigation facilities, as opposed to the more localised, coastal aids. Whilst most of the systems rely on surface propagation of radio waves, the use of acoustics and sea-bed mapping instruments constitute accurate alternatives for some sub-sea applications.  相似文献   
3.
两株琼胶酶高产细菌的筛选和鉴定   总被引:4,自引:1,他引:4  
从海洋环境中筛选得到两株琼胶酶的高产菌株,通过形态观察和生理生化反应,确定它们属于弧菌属,通过BIOLOG细菌鉴定系统鉴定,并同弧菌属标准菌株分析比较,确定上方宝剑两株菌都是塔式弧菌(Vibrio tubiashii),这两株菌在碳源利用方面存在差别。  相似文献   
4.
Metalliferous and pelagic sediments are exposed within and above the extrusive successions of the Upper Cretaceous Oman ophiolite which, on the basis of mostly geochemical evidence, is believed to have formed in an incipient marginal basin setting located above a NE-dipping subduction zone. The ophiolitic extrusives document various volcano-tectonic settings which include the axial zones of a spreading ridge, fault-controlled seamounts and off-axis volcanic edifices. Most of the Fe, Mn and trace metal-enriched sediments studied are interpreted as precipitates formed by oxidation of solutions derived from high-temperature sulphide-precipitating vents. The trace element content (e.g. REE and Sr) was largely scavenged from seawater. The sediments are similar to the dispersed metalliferous sediments on the flanks of modern spreading ridges, and the ‘basal’ sediments of DSDP wells and of other ophiolite complexes (e.g. Troodos, Cyprus).Distinctive mound structures located low in the lavas are attributed to percolation of sulphide-rich solutions into already deposited metalliferous oxide sediments. The resulting iron-silica rock was probably originally precipitated as ferruginous silicates.Major massive sulphides formed off-axis at the base of intermediate-basic edifices of volcanic arc affinities. Fe, Mn and trace metal enrichment in the sediment cover of a flat-topped seamount of axial lavas is interpreted as a dispersion halo around the largest massive sulphide orebody which is situated 5 km away (Lasail). Small massive sulphide bodies are common in the axial lavas particularly along major seafloor fault zones. The metalliferous sediments, locally precipitated near these vents, are ferromanganiferous, but trace metal-depleted.The metalliferous and pelagic sediment cover of the extrusive successions, generally, documents waning hydrothermal input after volcanism ended in the area.A model is discussed in which the ophiolite was created at a spreading axis above a subduction zone dipping away from the Arabian continental margin. With progressive subduction this crust approached the margin. Initially, calcareous sediment accumulated above the calcite compensation depth (CCD), but then non-calcareous radiolarites were deposited as the ophiolitic crust approached the continental margin where the CCD was higher and marginal upwelling possibly enhanced productivity. As the edge of the Arabian continental margin entered the trench, the over-riding ophiolite was regionally uplifted allowing short-lived chalk accumulation above the CCD. This was followed by volcaniclastic deposition related to the tectonic emplacement.  相似文献   
5.
6.
A technique has been devised for firing arrays of bottom shots on the ocean bed in depths upto 4000 m or more. Ten kilogram explosive charges are dropped from the surface while the shooting ship is navigated acoustically. They are detonated at preset times by an electronic timer which initiates an electrical detonator, detonating cord and cast PETN/TNT explosive. Ranges to ocean bottom seismographs, and the shot instants, can be calculated from the arrival-time differences of the direct and surface-reflected water waves. The accuracy, which is dependent on water-depth and range, was better than 22 m in range and 14 msec in shot instant for our experiments.  相似文献   
7.
The location, size, and principal characteristics of the currently known proven and probable terrestrial impact structures are tabulated. Of the 78 known probable structures, only 3 are Precambrian and the majority are <300 my in age. A survey of the variation in preservation with size and age indicates that, unless protected by sedimentary cover, a structure <20 km in diameter has a recognizable life of <600 my. The depth-diameter relationships of terrestrial structures are similar to lunar craters; however, it is believed that terrestrial craters were always shallower than their lunar counterparts. Complex structures formed in sedimentary targets are shallower than those in crystalline targets, and the transition from simple to complex crater morphology occurs in sedimentary strata at approximately one-half the diameter of the morphology transition in crystalline rocks. This is a reflection of target strength. Although observations indicate that crater size, target strength, and surface gravity are variables in the formation of complex craters, they do not permit an unequivocal choice between collapse and rebound processes for the formation of complex structures. It may be that both processes act together in the modification of crater morphology during the later stages of excavation. The major emphasis of recent shock metamorphic studies has been toward the development of models of cratering processes. An important contribution has been the identification, through meteoritic contamination in the melt rocks, of the type of bolide at a number of probable impact structures. This has served to strengthen the link between the occurrence of shock metamorphic effects and their origin by hypervelocity meteorite impact.  相似文献   
8.
Wetland mitigation banking is an American neoliberal environmental policy that has created a functioning market in `ecosystem services', commodities defined using the holistic measures of ecological science. The development of this market is discussed as a project of environmental governance, defined as the nation-state's regulation of ecological relations within its territory towards stabilizing capitalist relations of power and accumulation. I argue that the wetland banking industry serves as a bellwether that presages problems that other strategies of neoliberal environmental governance will experience. Ethnographic, economic and ecological data from the Chicago-area wetland banking industry inform a discussion of two major obstacles to neoliberal strategy: the problem of relying on ecological science to define the unit of trade, and the problem of aligning the somewhat independent relations of law, politics, markets and ecosystems across an array of spatial scales. Theoretical guidance is sought from recent work on `social natures' and from the Regulationist approach to institutional political economics.  相似文献   
9.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
10.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号