首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   17篇
  国内免费   1篇
测绘学   8篇
大气科学   30篇
地球物理   66篇
地质学   96篇
海洋学   27篇
天文学   39篇
综合类   2篇
自然地理   23篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   12篇
  2016年   6篇
  2015年   12篇
  2014年   8篇
  2013年   10篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   29篇
  2008年   17篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   2篇
排序方式: 共有291条查询结果,搜索用时 21 毫秒
1.
We present the finalized catalog of solar energetic proton events detected by the Wind/EPACT instrument over the period 1996?–?2016. Onset times, peak times, peak proton intensity and onset-to-peak proton fluence are evaluated for the two available energy channels, at about 25 and 50 MeV. We describe the procedure utilized to identify the proton events and to relate them to their solar origin (in terms of flares and coronal mass ejections). The statistical relationships between the energetic protons and their origin (linear and partial correlation analysis) are reported and discussed in view of earlier findings. Finally, the different trends found in the first 8 years of Solar Cycles 23 and 24 are discussed.  相似文献   
2.
It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcophanite has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 Å in the ab plane and contain only 1.2 layers (8.6 Å) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn–Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere.  相似文献   
3.
4.
The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.  相似文献   
5.
The dynamics and thermodynamics of large ash flows   总被引:6,自引:6,他引:0  
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   
6.
The pH-dependence of oxide dissolution rates is controlled by Brønsted acid-base reactions at the mineral surface. These reactions are rapid but depend explicitly on temperature, as do the subsequent slow rates of bond hydrolysis. The net result is that dissolution rates vary in a complicated fashion with temperature and solution pH. The enthalpy changes of acid-base reactions on oxide materials are sufficiently similar, however, that general statements can be made about their contribution. The enthalpy changes from proton adsorption to a hydroxyl functional group (SOH), or to a deprotonated functional group (SO ), are generally exothermic. The enthalpy changes become increasingly endothermic, however, as charge accumulates on the mineral surface and the charged species interact electrostatically. The result is that mineral dissolution rates are least sensitive to temperature, as measured with an Arrhenius-like rate law, at pH conditions near the Point of Zero Net Proton Charge.  相似文献   
7.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   
8.
Remote observations of the lunar radiowave emission are reexamined in the light of physical property data accumulated through the Apollo program. It is found that thermal and electrical properties determined for a number of different landing sites yield theoretical results in good agreement with remote observations for millimeter and short centimeter wavelengths. Theoretical models incorporating reflecting layers of rock and physical property data from the Apollo program are compared to the longer wavelength (5–500 cm) observational data to estimate a disk average steady state heat flow and a mean depth of the lunar regolith. It is found that a high heat flow, comparable to the heat flows measured at the Apollo 15 and 17 sites, is required to fit the available 5–20 cm wavelength remote data, and that a lunar surface layer relatively free of large boulders within the upper 10–30 m best fits the observations of a decreasing brightness temperature with wavelength for wavelengths greater than ~ 50 cm.  相似文献   
9.
10.
This article evaluates the potential of 1-m resolution, 128-band hyperspectral imagery for mapping in-stream habitats, depths, and woody debris in third- to fifth-order streams in the northern Yellowstone region. Maximum likelihood supervised classification using principal component images provided overall classification accuracies for in-stream habitats (glides, riffles, pools, and eddy drop zones) ranging from 69% for third-order streams to 86% for fifth-order streams. This scale dependency of classification accuracy was probably driven by the greater proportion of transitional boundary areas in the smaller streams. Multiple regressions of measured depths (y) versus principal component scores (x1, x2,…, xn) generated R2 values ranging from 67% for high-gradient riffles to 99% for glides in a fifth-order reach. R2 values were lower in third-order reaches, ranging from 28% for runs and glides to 94% for pools. The less accurate depth estimates obtained for smaller streams probably resulted from the relative increase in the number of mixed pixels, where a wide range of depths and surface turbulence occurred within a single pixel. Matched filter (MF) mapping of woody debris generated overall accuracies of 83% in the fifth-order Lamar River. Accuracy figures for the in-stream habitat and wood mapping may have been misleadingly low because the fine-resolution imagery captured fine-scale variations not mapped by field teams, which in turn generated false “misclassifications” when the image and field maps were compared.The use of high spatial resolution hyperspectral (HSRH) imagery for stream mapping is limited by the need for clear water to measure depth, by any tree cover obscuring the stream, and by the limited availability of airborne hyperspectral sensors. Nonetheless, the high accuracies achieved in northern Yellowstone streams indicate that HSRH imagery can be a powerful tool for watershed-wide mapping, monitoring, and modeling of streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号