首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   2篇
  国内免费   1篇
测绘学   4篇
大气科学   7篇
地球物理   34篇
地质学   18篇
海洋学   37篇
天文学   45篇
综合类   1篇
自然地理   2篇
  2021年   3篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   6篇
  2003年   9篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   8篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有148条查询结果,搜索用时 250 毫秒
1.
Understanding the development from syn-rift to spreading in the South China Sea (SCS) is important in elucidating the western Pacific's tectonic evolution because the SCS is a major tectonic constituent of the many marginal seas in the region. This paper describes research examining the transition from rifting to spreading along the northern margin of the SCS, made possible by the amalgamation of newly acquired and existing geophysical data. The northernmost SCS was surveyed as part of a joint Japan-China cooperative project (JCCP) in two phases in 1993 and 1994. The purpose of the investigation was to reveal seismic and magnetic characteristics of the transitional zone between continental crust and the abyssal basin. Compilation of marine gravity and geomagnetic data of the South China Sea clarify structural characteristics of its rifted continental and convergent margins, both past and present. Total and three component magnetic data clearly indicate the magnetic lineations of the oceanic basin and the magnetic characteristics of its varied margins. The analyses of magnetic, gravity and seismic data and other geophysical and geological information from the SCS led up to the following results: (1) N-S direction seafloor spreading started from early Eocene. There were at least four separate evolutional stages. Directions and rates of the spreading are fluctuating and unstable and spreading continued from 32 to 17 Ma. (2) The apparent difference in the present tectonism of the eastern and western parts of Continent Ocean Boundary (COB) implies that in the east of the continental breakup is governed by a strike slip faulting. (3) The seismic high velocity layer in the lower crust seems to be underplated beneath the stretched continental crust. (4) Magnetic anomaly of the continental margin area seems to be rooted in the uppermost sediment and upper part of lower crust based on the tertiary volcanism. (5) Magnetic quiet zone (MQZ) anomaly in the continental margin area coincides with COB. (6) The non-magnetic or very weakly magnetized layer is probably responsible for MQZ. One of the causes of demagnetization of the layer is due to hydrothermal alteration while high temperature mantle materials being underplated. Another explanation is that horizontal sequences of basalt each with flip-flop magnetization polarity cancel out to the resultant magnetic field on the surface. We are currently developing a synthetic database system containing datasets of seismicity, potential field data, crustal and thermal structures, and other geophysical data to facilitate the study of past, contemporary and future changes in the deep sea environment around Japan; i.e. trench, trough, subduction zones, marginal basins and island arcs. Several special characteristics are an object-oriented approach to the collection and multi-faceted studies of global data from a variety of sources.  相似文献   
2.
Using a two-dimensional primitive equation model, we examine nonlinear responses of a semidiurnal tidal flow impinging on a seamount with a background Garrett-Munk-like (GM-like) internal wavefield. It is found that horizontally elongated pancake-like structures of high vertical wavenumber near-inertial current shear are created both in the near-field (the region over the slope of the seamount) and far-field (the region over the flat bottom of the ocean). An important distinction is that the high vertical wavenumber near-inertial current shear is amplified only at mid-latitudes in the far-field (owing to a parametric subharmonic instability (PSI)), whereas it is amplified both at mid-and high-latitudes (above the latitude where PSI can occur) in the near-field. In order to clarify the generating mechanism for the strong shear in the near-field, additional numerical experiments are carried out with the GM-like background internal waves removed. The experiments show that the strong shear is also created, indicating that it is not caused by the interaction between the background GM-like internal waves and the semidiurnal internal tides. One possible explanation is proposed for the amplification of high vertical wavenumber near-inertial current shear in the near-field where tide residual flow resulting from tide-topography interaction plays an important role in transferring energy from high-mode internal tides to near-inertial internal waves.  相似文献   
3.
During time-series observations in Sagami Bay, Japan, the concentration of dissolved dimethylsulfoniopropionate (DMSPd), a precursor of dimethylsulfide (DMS), was negatively correlated with salinity. In the laboratory, low-salinity shock reduced DMS production rates of the natural bacterial community and induced rapid DMSP release from a dinophyte, Heterocapsa triquetra, suggesting that low-salinity shock reduced DMSPd consumption but enhanced DMSPd production, which agrees with the negative correlation between DMSPd and salinity observed in Sagami bay. In addition, low-salinity shock did not affect DMSP lyase activity of H. triquetra. Low-salinity shock would increase the contribution from algae in DMS production, leading to an increase in potential DMS productivity in the environment.  相似文献   
4.
Solid-phase microextraction (SPME) is a simple, sensitive and less destructive method for the determination of dimethylsulfide (DMS) in seawater. Combined with detection by gas chromatography-mass spectrometry (GC-MS), the method had sufficient sensitivity (minimum detectable concentration of DMS was 0.05 nM), and practical levels of reproducibility (relative standard deviation ≤7%) and linearity (r 2 > 0.995) over a wide concentration range (0.5 to 910 nM). The protocol developed was applied to a Sagami Bay water sample to determine concentrations of DMS and DMSP, and in situ DMSP-lyase activity.  相似文献   
5.
Thirty-three new measurements on the seaward slope and outer rise of the Japan Trench along a parallel of 38°45′N revealed the existence of high heat flow anomalies on the subducting Pacific plate, where the seafloor age is about 135 m.y.. The most prominent anomaly with the highest value of 114 mW/m2 is associated with a small mound on the outer rise, which was reported to be a kind of mud volcano. On the seaward slope of the trench, heat flow is variable: high (70–90 mW/m2) at some locations and normal for the seafloor age (about 50 mW/m2) at others. The spatial variation of heat flow may be related to development of normal faults and horst/graben structures due to bending of the Pacific plate before subduction, with fluid flow along the fault zones enhancing the vertical heat transfer. Possible heat sources of the high heat flow anomalies are intra-plate volcanism in the last several million years like that discovered recently on the Pacific plate east of the Japan Trench.  相似文献   
6.
Infrared (IR) and nearinfrared (NIR) absorption spectra of hydrous and F-rich topazes were measured to assign an OH bending mode of topaz. Three absorption peaks at 1165, 3650, and 4803 cm−1 are assigned to OH related absorption peaks. Since a peak at 4803 cm−1 can be assigned to a combination mode of 1165 and 3650 cm−1, the 1165 cm−1 peak is harmonic with the 3650 cm−1 peak. Polarized IR absorption spectra of (100), (010), and (001) planes of the hydrous topaz were measured to examine IR active orientation of the 1165 cm−1 OH related mode. Three pleochroic distributions of the absorption peak at 1165 cm−1 on (100), (010), and (001) planes indicate an active orientation of the 1165 cm−1 OH related mode. The IR active orientation of the 1165 cm−1 OH related mode in topaz is normal to the OH dipole. The orthogonality and harmonic combination mode indicate that the 1165 cm−1 peak is OH bending mode. The active orientation of OH bending mode is polarized in the plane normal to the OH dipole. The polarization suggests that anisotropic thermal vibration of protons on the hydroxyl is maximum along the IR active orientation. Received: August 16, 1996 / Revised, accepted: April 20, 1997  相似文献   
7.
Abstract The Cetacea are the most diverse and highly aquatically adapted group of mammals. Their fossil record extends back at least to the Middle Eocene ( ca 50 Ma), and they will possibly be found earlier, judging by the relatively highly evolved nature of the earliest known whales. The most likely terrestrial ancestors of whales are the mesonychids, primitive hoofed mammals with omnivorous diets. Recently discovered archaeocetes with large, mesonychid-like heads and dentitions and functional hind limbs reconfirm earlier ideas about the mesonychid origin of cetaceans and the amphibious nature of the earliest transitional forms. Fossil cetaceans are relatively abundant and diverse thoughout the world, and are now known from every continent, including Antarctica. Odontocetes evolved echolocation to locate food. Mysticetes developed bulk feeding adaptations. Both undoubtedly evolved from archaeocetes, and the monophyly of Cetacea is the most parsimonious present hypothesis. Chromosomal and molecular evidence has taken an increasingly important role in determining cetacean relationships, but fossils and classical comparative morphological studies remain a necessary and pivotal source of information about cetacean phylogeny.  相似文献   
8.
The divalent cation distribution in olivine (Mg, Fe)2SiO4 under high pressure and temperature was studied to clarify the detailed state of olivine in the mantle. Single crystal samples were heated for a sufficient period of time for the cations to migrate and quenched fast enough to preserve the equilibrated state under high pressures, and the crystal structure was determined with X-ray method. The pressure effect on the distribution coefficient K D[= (Fe/Mg) M1/(Fe/Mg) M2] was determined for the first time; dK D/dP?0.02 GPa?1. A set of five thermodynamic parameters required to describe the regular solution model was determined from data concerning the pressure dependence and the known temperature and compositional effects. As a result we have shown how K D depends on pressure, temperature, and composition. The notable feature clarified is the very large contribution of nonideality in the olivine solid solution. The K D of olivine crystals in the mantle is predicted; K D increases to ~ 2.2 at the depth of 400 km, in contrast to 0.9 ~ 1.2 of natural samples available at the surface of the Earth.  相似文献   
9.
An evaluation of oceanic containment strategies for anthropogenic carbon dioxide is presented. Energy conservation is also addressed through an input hydrocarbon-fuel consumption function. The effectiveness of the proposed countermeasures is determined from atmospheric CO2 concentration predictions. A previous box model with a diffusive deep ocean is adapted and applied to the concept of fractional CO2 injection in 500 m deep waters. Next, the contributions of oceanic calcium carbonate sediment dissolution, and of deep seawater renewal, are included. Numerical results show that for CO2 direct removal measures to be effective, large fractions of anthropogenic carbon dioxide have to be processed. This point favors fuel pre-processing concepts. The global model also indicates that energy conservation, i.e. a hydrocarbon-fuel consumption slowdown, remains the most effective way to mitigate the greenhouse effect, because it offers mankind a substantial time delay to implement new energy production alternatives.  相似文献   
10.
Paleomagnetic data for the Cretaceous volcanic and sedimentary rocks in the Andean region of Peru are given. Reliable paleomagnetic field directions were obtained for three Cretaceous (Albian to Cenomanian) formations from calcareous sediments in northern Peru. Stable remanent magnetization directions were also derived from twelve Cretaceous lava flows and dikes in coastal Peru. Paleomagnetic data of the same age from the stable areas of South America such as Brazil demonstrate that the paleomagnetic poles are nearly coincident with the present pole, but Peruvian paleomagnetic directions studied here showed several tens of degrees of counterclockwise declination shifts. This suggests counterclockwise tectonic rotation of an extensive block which includes the whole of Andean Peru.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号