首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   19篇
  国内免费   1篇
大气科学   15篇
地球物理   30篇
地质学   73篇
海洋学   2篇
天文学   12篇
自然地理   3篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   16篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2004年   4篇
  2003年   6篇
  2001年   1篇
  1981年   1篇
排序方式: 共有135条查询结果,搜索用时 203 毫秒
1.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   
2.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   
3.
Hydrogeology Journal - Thanks to recent technological advances, hydrogeologists now have access to large amounts of data acquired in real time. Processing these data using traditional modelling...  相似文献   
4.
This study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bündnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected within the northeastern margin of the Lepontine dome and easterly adjacent areas of the Swiss Central Alps. Three-dimensional mapping of isotemperature contours in map and profile views shows that the isotemperature contours associated with the Miocene Barrow-type Lepontine metamorphic event cut across refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near-isothermal decompression; these contours appear folded by younger, large-scale post-nappe-stacking folds. A substantial jump in the recorded maximum temperatures across the tectonic contact between the frontal Adula nappe complex and surrounding metasediments indicates that this contact accommodated differential tectonic movement of the Adula nappe with respect to the enveloping Bündnerschiefer after maximum temperatures were reached within the northern Adula nappe, i.e. after Late Eocene time.  相似文献   
5.
This work presents a new subdivision method to upscale absolute permeability fields. This process, called two-step method, consists in (i) solving micro-scale equations on subdomains obtained from the full domain regular decomposition and (ii) solve a second upscaling with Darcy’s law on the permeability fields obtained in the first step. The micro-scale equations used depend on the case studied. The two-step upscaling process is validated on randomly generated Darcy-scale permeability fields by measuring the numerical error induced by upscaling. The method is then applied to real domains obtained from sandstone micro-tomographic images. The method specificities due to pore-space structure are discussed. The main advantage of the two-step upscaling method resides in the drastic reduction of computational costs (CPU time and memory usage) while maintaining a numerical error similar to that of other upscaling procedures. This new upscaling method may improve permeability predictions by the use of finer meshes or larger sample volumes.  相似文献   
6.
7.
8.
9.
10.
Natural or artificial hydraulic connections between a granular aquifer in contact with a fractured-rock aquifer can have significant physical and chemical impacts at both a local and a regional scale. In this study, numerical simulations are conducted in order to illustrate the hydrogeological consequences of such hydraulic relationships. The numerical investigation, based on a conceptual model, focuses on the effects of the hydraulic connections when conducting a pumping test in a well that is set into a granular confined aquifer overlying a fractured-rock aquifer which presents a few fractures directly connected to the granular aquifer. It is illustrated that when interpreting the pumping test with the conventional methods consisting of plotting the drawdown versus time, a bias is introduced on the estimation of the transmissivity of the granular aquifer due to groundwater flowing from the fractured-rock aquifer via connecting fractures. However, it is underlined that plotting drawdown log-derivative versus time helps to diagnose the existence of these hydraulic relationships and therefore avoids committing a bias on the transmissivity estimation of the granular aquifer. Numerical simulation results also illustrate that hydraulic connections between the two aquifers can have significant impacts on the hydrogeochemical signature of the granular aquifer under investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号