首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
测绘学   2篇
大气科学   4篇
地球物理   2篇
地质学   8篇
天文学   3篇
综合类   1篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2005年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Researchers ubiquitously noted that the common processes of partitioning oblique convergence in response to drag from the trench-hanging plate simultaneously produce radial slips, along-strike translation, and extension parallel to the deformation front. Here, we focus on the area between Nepal and Sikkim–Darjeeling Himalayas, and carry out gravity and finite-element stress modeling of the strike-orthogonal converging Indian lithosphere. We delineate the geometries of different layers and their interfaces through gravity modeling. The optimum model parameters along with rheological parameters of different layers are used for finite-element modeling. Finite-element modeling is done with boundary conditions of keeping the upper surface free and rigidly fixing the section of the northern boundary below the Main Himalayan Thrust. We impart on its frontal section an amount of 6 × 1012 N/m force, equivalent to resistive force of the Himalayan–Tibet system, and analyze the maximum and minimum compressive stress fields evolved in the lithosphere. We testify our observations with earthquake database and other geophysical and geological studies. We note that an increasing flexing of the Indian lithosphere beyond the Main Boundary Thrust becomes maxima between the Main Central Thrust and South Tibetan Detachment in both the areas; however, more steepening of the Moho boundary is identified in the Sikkim–Darjeeling Himalaya. This abrupt change in lithospheric geometry beneath the Greater Himalaya is likely correlated with the sharp elevation changes in the topography. Although the highest seismicity concentration is dominant in this zone, the Lesser and the Tethys Himalayas in Sikkim–Darjeeling area also record relatively fair seismic activity. More compressive stress field in different layers right within the sharp bending zone supports this observation. We thus propose that the sharp bending zone beneath the Greater Himalaya is suffering maximum deformation, and the deformation is continued in the mantle too. We also identify both right-lateral shear and radial vergence slip, which are presumably associated with the general dynamics and kinematics of the Himalaya.  相似文献   
2.
The chemical compositions of various ions in meltwater of the Chhota Shigri glacier were analysed during the observation period from May to October 2010. Total 164 samples of meltwater were collected in two times a day at 8.0 a.m and 6.0 p.m. Bicarbonate and calcium were the dominant anion and cation in meltwater of the investigation area. High ratios of (Ca + Mg) versus TZ+ and (Ca + Mg) versus (Na + K) demonstrate that hydrogeochemistry of the study area was mainly governed by carbonate type weathering. The average sulphate mass fraction of meltwater was computed to be 0.31 ± 0.12, showing dominancy of bicarbonate over sulphate. This excess bicarbonate would be generated by an alternative proton supply mechanism due to biological activities in the bed rock lithology and sulphide oxidation may be about the same as carbonation as a driver of chemical weathering at Chhota Shigri glacier. In general, major ions and total dissolved solid concentrations showed decreasing trend with increasing discharge from the study area. The average daily mean dissolved load of this glacier was much lower than that of the Gangotri glacier, which may be due to low meltwater runoff and lithology of the investigation area. The cation weathering rates of study area for early, peak and late melt seasons were computed to be 694, 1631 and 481 meq m?2 a?1, respectively. The average value of chemical denudation rates of the Chhota Shigri glacier meltwater was found lower than that of the Dokriani glacier.  相似文献   
3.
The Malani igneous suite, a terrain showing crustal formation as late as in Neoproterozoic, shows some pink and grey granites in the northeast of the desert city of Jodhpur, in northwestern, India. The average heat generation value of 15.925 HGU for these granites that is much higher than the average known value (3.8 HGU) for the continental crust has been reported here. The concentration of uranium determined is four times higher than the average continental crust. Thorium is still higher than U and K. The radioelement concentration (Ur) varies from 15.58 to 73.48 in the granites with an average of 45.671, clearly indicates a ‘hot crust’. Hence it is favourable for the formation of mineralization of HFS elements like, Nb, Ce, REE and U and Th, which need to be explored in the terrain as an economic deposit.  相似文献   
4.
This article is an attempt to suggest a new approach for eliminating the lengthy process of selecting various parameters for extracting texture features and to quantify the relative importance of the parameters affecting textural classification. A multivariate data analysis technique called ‘conjoint analysis’ has been used in the study to analyse the relative importance of these parameters. Results indicate that the choice of texture feature and window size have higher relative importance in the classification process than quantization level or the choice of image band for extracting texture feature. Results of the classification of an Indian urban environment using spatial property (texture) have also been reported. It was observed that the classification incorporating texture features using grey level co-occurrence matrix and wavelet-based approach improves the overall accuracy in a statistically significant manner in comparison to pure spectral classification.  相似文献   
5.
Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier, Himachal Pradesh, India for different melt seasons during the period 2011-2014. Maximum suspended sediment concentration in the meltwater was found during the month of July 2011, 2012 and 2014 constituting to 55.2%, 48.3% and 46.9%, respectively. Whereas in 2013, maximum suspended sediment concentration was observed in August accounting for 46.1% of the total. On the other hand, maximum suspended sediment load was monitored in the month of July 2011, 2012 and 2014 constituting 59.5%, 63% and 55.7% of the total, respectively. Whereas in 2013, maximum suspended sediment load was observed in the month of August accounting for 49.8% of the total suspended sediment load. Annual distribution of suspended sediment concentration (SSC) and suspended sediment load (SSL) in the Chhota Shigri glacier shows higher value of SSC and SSL during the study period 2012 and 2013, which may be due to the presence of high glacial runoff and negative mass balance of the studied area during these time periods. Marked diurnal variation has been observed in the SSC of meltwater. Strong correlation was observed between SSC and SSL with discharge. On the other hand, SSC and SSL also showed strong exponential correlation with air temperature of the studied area. Sediment yield from the catchment of Chhota Shigri glacier is high during the peak melt season (July and August) and low during the late melt season (September and October). The average value of erosion rate for Chhota Shigri glacier basin during the study period 2011-2014 was calculated to be 1.1 mm/yr, which is lower than the average erosion rate of other Himalayan glaciers such as Rakiot, Chorabari and Gangotri glaciers, which may be caused by its geological setting containing high erosion resistant rocks such as granite, granite gneiss and porphyritic granite.  相似文献   
6.
Comprehensive, ground-based observations from the US Department of Energy Atmospheric Radiation Measurements program Southern Great Plains site are used to study the variability of turbulence forcings and cloud-scale turbulence structures in a continental stratocumulus cloud. The turbulence observations are made from an upward facing cloud (35 GHz) Doppler radar. Cloud base and liquid water path are characterized using a lidar at the surface and a microwave radiometer. The turbulence characterizations are compared and contrasted with those observed in marine stratocumulus clouds. During the 16-h observation period used in this study the cloud-base and cloud-top heights evolve with time and changes in liquid water path observed by the radiometer are consistent with variations in cloud depth. Unlike marine stratocumulus clouds, a diurnal cycle of cloud thickness and liquid water path is not observed. The observed surface latent, sensible, and virtual sensible heat fluxes and the radiative fluxes exhibit a diurnal cycle with values increasing from sunrise to afternoon and decreasing afterwards. During the night, the sensible heat, virtual sensible heat and the net radiative fluxes at the surface are slightly negative. Solar radiative heating prevails in the cloud layer during the day and strong radiative cooling exists at cloud top even during the day. Unlike marine stratocumulus, surface heating described by the convective velocity scale \(W_\mathrm{s}^{*}\) and cloud-top cooling described by \(W_\mathrm{r}^{*}\) are both important in driving the in-cloud turbulence during the day, whereas cloud-top cooling is the exclusive contributor during the night. The combined \(W_\mathrm{s}^{*}\) and \(W_\mathrm{r}^{*}\) (the total velocity scale \(W_\mathrm{t}^{*})\) provides a useful way to track the evolution of the turbulence structure in the cloud. The variance of the radar-measured radial velocity, which is related to resolved turbulence, follows the diurnal cycle and is consistent with the total velocity scale \(W_\mathrm{t}^{*}\) variations. It is higher during the day and lower during the night, which is contrary to that in marine stratocumulus. The \(W_\mathrm{t}^{*}\) values are lowest around sunset when the radiative cooling is also small due to upper-level clouds observed above the low-level stratus. The vertical distribution of the variance results from the surface heating during the day and cloud-top cooling during the night. The squared spectrum width, which is related to turbulence structures within the radar sampling volume (unresolved turbulence) also follows the diurnal cycle. Its vertical distribution indicates that the unresolved turbulence more closely relates to the processes near cloud top. Turbulence in the cloud requires about an hour to respond to the external forcings of surface heating and cloud-top radiative cooling. Positive skewness prevails during the day and negative skewness prevails at night with a sharp transition around sunset. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. The turbulence characteristics and variability defined in this study can be used to evaluate the time evolution of turbulence structures in large eddy simulation forced by surface and cloud-top radiative forcings.  相似文献   
7.
India Meteorological department (IMD) used INSAT-3D Metrological Satellite Imager data to drive two type rainfall estimation products viz-Hydro Estimate (HE) and INSAT Multi-Spectral Rainfall Algorithm (IMSRA) on half hourly rainfall rate and daily accumulated rainfall in millimeter (mm). Integrated Multi-Satellite Retrieval for GPM (IMERG) product is being derived by NASA and JAXA by using Global Precipitation Mission (GPM) satellites data. IMSRA and GPM (IMERG) are gridded data at 10 km spatial resolution and HE is available at pixel level (4 km at Nadir). IMD provides gridded rainfall data at 0.25° × 0.25° resolution which is based on wide coverage of 6955 actual observation. In present study, validation of INSAT-3D based Hydro Estimator (HE), INSAT Multi-Spectral Rainfall Algorithm (IMSRA) and Integrated Multi-Satellite Retrieval for GPM (IMERG) of Global Precipitation Mission (GPM) satellites are carried out with IMD gridded data set for heavy rainfall event during winter monsoon, over peninsular India (November–December 2015). In validation, Nash–Sutcliffe efficiencies (NSE), RMSE, Correlation, Skilled scores are calculated at grid level for heavy and very heavy rain categories and the values of NSE of HE (? 32.36, ? 3.12), GPM (? 68.67, ? 2.39) and IMSRA (? 0.02, 0.28) on 16th November 2015 and HE (? 13.65, ? 1.69), GPM (? 43.79, ? 2.94) and IMSRA (? 1.08, ? 1.60) on 2nd Dec 2015, for heavy and very heavy rainfall. On both days, HE is showing better rainfall estimate compare to GPM for Heavy rainfall and GPM showing better estimation for very heavy rainfall events. In all the cases IMSRA is underestimating, if daily rain fall exceeded 75 mm.  相似文献   
8.
Cloud radars at X, Ka and W-bands have been used in the past for ocean studies of clouds, but the lack of suitable stabilization has limited their usefulness in obtaining accurate measurements of the velocity structure of cloud particles and the heights of cloud features. A 94 GHz (W-band) radar suitable for use on shipboard studies of clouds has been developed that is small and lightweight and can maintain the radar’s beam pointing in the vertical to reduce the affects of the pitch and roll of the ship. A vertical velocity sensor on the platform allows the effects of the ship’s heave to be removed from the measured cloud particle motions. Results from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) field program on the NOAA vessel Ronald H. Brown demonstrate the improvements to the cloud measurements after the ship’s motion effects are removed. The compact design of the radar also makes it suitable for use in aircraft studies. The radar is being repackaged to fit in an aft bay of a NOAA P3 aircraft to observe sea-spray profiles during ocean storms.  相似文献   
9.
10.
Coal mine fire is a serious problem in Jharia coal field, India. The coal mine fire can be detected with different techniques such as borehole temperature measurement, thermo-compositional analysis, remote sensing techniques, thermo-graphic measurement and geophysical methods. In this study, various geophysical methods were used to detect the surface and subsurface coal mine fires. Geophysical techniques used in the present study are apparent resistivity, self-potential (SP), magnetic method and thermography. Geophysical anomalies such as low SP value of \(-60\hbox { mV}\), high negative magnetic response and low apparent resistivity value helped us to detect and delineate the fire and non-fire areas laterally as well as depthwise. Furthermore, the thermography survey was carried out in the coal field using thermal imaging camera in order to substantiate the geophysical methods. This integrated approach was found to be more advantageous for the detection and delineation of surface and subsurface fire with respect to use of any specific techniques. Moreover, the level of threat towards the locality, national railway line was also assessed unambiguously using the above techniques. Hence, proper planning and implementation towards the mitigation of hazard can be achieved on the basis of the reported results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号