首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
大气科学   3篇
  2024年   2篇
  2023年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
目的】为了解湖南怀化雨雪天气降水相态演变特征。【方法】选取ERA5资料、微波辐射计和SA双偏振多普勒雷达等多源观测资料作为基础数据,采用常规统计、环流背景、相关分析等方法,对2022年12月27—28日湖南怀化地区一次雨雪天气的降水相态演变特征进行分析。【结果】(1)中高纬地区在中层槽的引导下冷空气南下,中低纬地区在南支槽的引导下西南气流东移,致使冷空气与暖湿气流交汇,降水相态发生变化。过程前低层切变线南压、低空西南急流发展,低层系统处于暖平流中,且地面温度较高,降水相态为雨。28日20时后冷平流快速发展,地面迅速降温,形成“冷垫”,致使降水相态转为雨夹雪。后期受南下强冷空气影响,导致降水相态转为雪。(2)散度和垂直速度的分布说明,降雪阶段的动力条件来源于低层,降雨时段的动力条件来源于高层。(3)SA双偏振多普勒雷达的偏振量分析结果表明,在较大的水平反射率(20~35 dBz)区域,其差分反射率相对较小(约0.8~1.6 dBz之间),差分位移率也相对较小(约-1.2~0.6之间),相关系数>0.88。微波辐射计反演的0 ℃线可以作为降雪的重要判据,其液态水含量在降雨时含量较高,水汽浓度在降雪时显著下降,可以准确判断降雪的具体时间。【结论】 微波辐射计和双偏振雷达的组合应用可以作为怀化地区对降水相态转换临界预报的重要地基观测设备。  相似文献   
2.
基于微雨雷达、Ka波段云雷达、C波段天气雷达和微波辐射计等仪器的观测资料对2019年7月27日中天山地区一次局地对流云降水过程的精细结构及演变过程进行分析,并结合WRF高分辨率数值模式模拟结果研究了热力不稳定结构及风切变层对云发展的影响。结果表明:此次降水过程中天山北坡区域受到地形热力强迫,形成爬坡气流,并与翻越天山山脉的偏南气流在局部形成对流;雷达观测发现,由于天山山区受到高空西风的控制,局地产生的对流云团不足以突破中天山北坡上空的风速较大的西南气流或偏西气流,低层的偏北气流被高层气流夹带而转向形成风切变层。降水发生后,低层对流云团被限制在风切变层以下,云顶平整且高度较低,风切变层对对流云团存在明显的抑制作用。通过分析模拟结果,此次降水过程中风切变层对中天山北坡降水云的发展及热力不稳定变化影响十分重要,高层西南风对相当位温的平流输送使得风切变层上空更倾向于热力不稳定,同时使其下方更倾向于热力稳定从而抑制低层对流而促进高层对流的发展。当低层对流云团强度不足以突破其上空因垂直风切变导致的稳定层结,对流便会被局限于垂直风切变层以下,使得降水强度减弱。  相似文献   
3.
利用1996—2020年怀化常规地面观测资料和探空资料,根据地面冻雨观测记录,统计并总结了怀化冻雨时空分布特征,并利用探空资料分析了怀化冻雨形成机制及温湿垂直结构特征。结果表明:(1)怀化冻雨总体上呈南多北少的空间分布特点,其中北部沅陵冻雨日数最少(20 d),南部靖州最多(75 d)。从时间分布来看,最早从12月上旬开始,最迟于3月上旬结束,主要集中在12月下旬至2月中旬,1月下旬出现最多。(2)怀化冻雨的形成可分为冰相机制和暖雨机制,温湿结构可分为六类。其中暖雨机制冻雨占总数的473 %,冰相机制冻雨占527 %;平均云顶高度,暖雨机制均在36 km以下,冰相机制高于36 km;平均云顶温度,暖雨机制-66 ℃以上,最高17 ℃,冰相机制-30 ℃以下;平均地面温度,暖雨机制和冰相机制均<0 ℃,暖雨机制<-09 ℃,冰相机制>-10 ℃;暖层顶高和底高,暖雨机制较冰相机制更高,冰相机制相差不大;暖层厚度,冰相机制基本在084 km以上,云顶温度越低,暖层厚度越厚。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号