首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   2篇
海洋学   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
夏季长江河口潮间带反硝化作用和N2O的排放与吸收   总被引:15,自引:1,他引:15  
采用培养箱乙炔抑制和现场静态箱法,于夏季(7月)在长江河口潮滩潮间带进行了采样,研究表明,长江河口潮滩水体自身N2O产生速率很低,在潮汐淹没期沉积物是上覆水体N2O的来源,其来自沉积物中反硝化、硝化等氮素循环的多个反应过程,沉积物中N2O自然产生速率在0.10~8.50μmol/(m2·h)之间,反硝化速率在21.91~35.87μmol/(m2·h)之间。退潮出露期中潮滩是大气N2O的排放源犤交换速率在-11.03~13.17μmol/(m2·h)之间犦,5~10cm地温是影响N2O排放速率的显著性因素;低潮滩-大气界面N2O排放、吸收速率在-5.75~0.49μmol/(m2·h)之间。总体上看,中潮滩是大气N2O的排放源;而低潮滩对大气N2O有明显的吸收作用。潮滩植被(海三棱草和底栖藻类)的光合作用明显抑制了N2O的排放并可能导致吸收,而其呼吸作用则增加了N2O的排放,潮间带-大气界面N2O的排放和吸收与CO2的排放、吸收有显著的正相关关系。  相似文献   
2.
长江口崇明东滩沉积物反硝化作用研究   总被引:15,自引:0,他引:15  
选择长江河口崇明岛东部潮滩为典型研究区域, 从2003年7月到2004年7月在崇明东滩(CM)进行了隔月采样, 研究表明水体自身N2O产生速率很低, 沉积物是上覆水体N2O的来源, 沉积物中N2O产生速率在-0.08~1.74 mmolN·m-2·h-1之间, 夏季是N2O产生速率较高的季节. 不同潮滩部位N2O产生速率的差异, 以及N2O产生速率与反硝化速率、温度、溶解氧的相关关系表明中潮滩(CM-2)沉积物反硝化作用可能是N2O的主要产生源, 低潮滩(CM-3)沉积物中N2O来源于氮素循环的多个反应过程. 冬季和夏季是潮滩沉积物反硝化作用较强的季节, 晚秋(11月)、初春(3月)反硝化速率相对较低, 潮滩沉积物反硝化速率季节变化较大(1.12~34.09 mmolN·m-2·h-1). 温度、溶解氧以及二者的共同作用是影响潮滩沉积物反硝化作用进行的显著因素.  相似文献   
3.
夏季长江口潮间带CH4、CO2和N2O通量特征   总被引:5,自引:0,他引:5  
使用原位静态箱现场采样,对夏季(7月和8月)长江口崇明东滩湿地3种主要温室气体CO2、CH4和N2O的界面通量进行了同步观测.结果表明,夏季低潮滩是大气CH4的排放源(40.2 μg/(m2·h)),CO2和N2O的吸收汇(通量值分别为-86.3 mg/(m2·h),-27.6 μg/(m2·h)).7月和8月中潮滩是3种温室气体的排放源,CH4日平均排放速率达到6.56 mg/(m2·h),CO2为301 mg/(m2·h),N2O为69.9 μg/(m2·h).温度(气温和不同深度地温)、沉积物有机碳含量以及潮滩植被海三棱藨草和沉积物表层藻类的光合和呼吸是决定CH4、CO2、N2O产生、排放和吸收的主要因素.相关分析表明中潮滩气体排放通量与温度(气温和不同深度地温)呈显著正相关关系,但在低潮滩气体通量与温度的相关关系不明显.  相似文献   
4.
长江口沉积物-水界面无机氮交换通量的模拟测定   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对长江口水下沉积物-水界面可溶态无机氮(DIN=NO3- NO2- NH4 )的交换行为研究发现,低潮时近口点(A)沉积物是水体DIN的汇(-2006.99μmol/(m2·h)),而靠近口外点(B)沉积物是水体DIN的源(1848.27μmol/(m2·h))。但高潮时,A点沉积物转变为水体DIN的源(1880.97μmol/(m2·h)),而B点的沉积物转变成为DIN的汇(-956.64μmol/(m2·h))。在距河口较远高低潮盐度变化微弱的地点(P),沉积物始终是水体DIN的源(1872.41μmol/(m2·h))。高低潮海水盐度的变化对沉积物中微生物活动的影响是导致这一变化的主要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号