首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   9篇
  国内免费   11篇
地球物理   13篇
地质学   67篇
海洋学   16篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   10篇
  1997年   4篇
  1993年   3篇
  1992年   2篇
  1988年   1篇
排序方式: 共有96条查询结果,搜索用时 25 毫秒
1.
在天然气水合物发育区海底沉积物中甲烷厌氧氧化作用(AOM)是碳循环的重要组成部分。通过定量计算表层沉积物中甲烷迁移转化通量,可以更准确评估甲烷来源碳对沉积物碳库和海洋深部碳库影响。本文利用反应―运移模型对采集于南海神狐水合物发育区两个站位(SH-W19-PC、SH-W23-PC)采集的孔隙水SO_4~(2-)、溶解无机碳(DIC)、Ca~(2+)剖面进行拟合,同时对DIC碳同位素进行分析,确定近海底沉积物中的碳循环。研究显示两个站位孔隙水中SO_4~(2-)和Ca~(2+)浓度在剖面上随深度呈线性减少,DIC浓度随深度逐渐增加,其δ~(13)C_(DIC)值随深度逐渐降低至约-25‰,表明两个站位存在一定程度的AOM。模拟计算两个站位沉积物孔隙水溶解甲烷向上的通量分别为25.9和18.4 mmol·m~(-2) a~(-1),AOM作用产生的DIC分别占其总DIC量的70.7%和60%。由沉积物向海水中释放的DIC通量占DIC汇的约60%。因此,在天然气水合物发育区向海底渗漏甲烷大部分以DIC的形式进入上覆海水,这些具有极负碳同位素值的甲烷来源的DIC可能对局部深海碳库产生一定的影响。  相似文献   
2.
泥火山的全球分布和研究进展   总被引:1,自引:0,他引:1  
本文系统介绍了泥火山的全球分布特征、分类、成矿、成因特征和机制、生物地球化学和地质灾害。泥火山是盆地地层深部含水的泥质物在高压作用下喷出地表形成的锥状沉积体,主要发育在沉积速率较快和有横向挤压构造作用的盆地中。全球陆地有超过40个泥火山发育区,海底有超过20个泥火山发育区,每个发育区有几座到200多座泥火山不等,陆地和浅海区共有2000多个泥火山。各地泥火山有不同的喷发周期,喷发物也各有不同的形态、成分、来源和年龄。尽管泥火山的成因机制尚颇有争议,但较快的沉积速率和活动大陆边缘横向构造挤压作用无疑是两个最为关键的因素。由于泥火山对大地构造属性、油气勘探、生物地球化学、地质灾害和全球气候变化等问题的研究有着重要的意义,已逐渐成为地球科学一个新的研究热点。  相似文献   
3.
对陆地泥火山流体来源及其向地表渗漏过程中的改造作用开展研究,有利于加深理解泥火山释放甲烷的碳排放过程。新疆准噶尔盆地南缘独山子泥火山柱状沉积物和地表沉积物的矿物和元素组成,以及沉积物孔隙水离子组成等的分析结果显示,泥火山沉积物孔隙水Na+和Cl–间具有很好的正相关性,具有比海水高的Na+/Cl–和Li+/Cl–值、低的K+/Cl–和Mg2+/Cl–。泥火山沉积物与围岩相比,富集伊利石、绿泥石和方解石,缺少蒙脱石,富集Ca、亏损Si,这些变化主要与黏土矿物的脱水转变有关。表明泥火山流体主要来源于深部低盐度沉积物孔隙水,但经历了地表的蒸发作用,并混合了大气降水。  相似文献   
4.
5.
通过对南海北部陆缘珠江口和琼东南盆地气田的天然气形成水合物的地球化学计算模拟及地质地球化学条件分析,对珠江口和琼东南盆地天然气形成水合物的地球化学边界条件及分布区进行了研究。认识到南海北部陆缘琼东南和珠江口盆地内的断裂构造是天然气向海底渗漏的通道,为天然气水合物在海底的形成提供了物源;盆地内巨厚的第四纪富有机质沉积也为天然气水合物形成提供了充足的细菌成因生物气源。在海底温度2-16℃范围内,琼东南盆地气田10种天然气和珠江口盆地气田18种天然气形成水合物的压力有比较大的范围,随温度增高,天然气水合物形成的压力增高;盆地间和各天然气样品之间形成水合物的压力均是不一致的。在南海海水平均盐度3.4%条件下,结合海底温度与水深变化资料,珠江口和琼东南盆地天然气水合物形成和稳定分布的海区是不同的,珠江口盆地小于230m水深的海区没有天然气水合物的形成,在230-760m水深的海区可能有天然气水合物的存在,天然气水合物的稳定分布区应该在大于860m水深的深水区;在琼东南盆地水深小于320m的海区不可能有天然气水合物的形成,在320-650m水深的海区可能有天然气水合物的存在,大于650m水深的海区是天然气水合物的稳定分布区。  相似文献   
6.
天然气水合物(Gas Hydrate)是产于大陆坡海底和永久冻土带的一种新型能源资源,是在高压低温下由水和天然气形成的冰态超分子笼状固态物,每立方米的天然气水合物在标准状态下可释放160~180立方米天然气。据估计,全球天然气水合物蕴藏的天然气总量相当于全球  相似文献   
7.
南海西部陆坡海域海底广泛发育麻坑,其规模和数量在世界范围内均属罕见,但关于它们目前的活动特征尚不清楚。通过对西沙隆起西南部麻坑区采集的两根沉积柱样孔隙水SO^2–4、K^+、Mg^2+、Ca^2+、Sr^2+以及溶解有机碳(DIC)含量随深度的变化特征的研究,揭示麻坑内与硫酸根消耗有关的生物地球化学过程,并推断麻坑目前的活动状况。采集于麻坑外的C9柱样SO^2–4浓度变化整体呈向下凹的形态降低,减少的硫酸根是被有机质硫酸盐还原作用消耗。采集于麻坑内的C14柱样SO^2–4浓度梯度呈现明显的三段式变化,0.00-0.66 m内SO2–4浓度变化主要受有机质硫酸盐还原作用控制,0.66-3.70 m受有机质硫酸盐还原和甲烷缺氧氧化共同控制,3.70 m以下部分主要受甲烷缺氧氧化作用的影响。根据C14柱样3.7 m以下孔隙水硫酸根浓度梯度计算的硫酸根-甲烷交接带(SMI)约在14.3 m处,甲烷向上扩散的通量约为0.0144 mol/(m^2·a)。此外,2个柱样沉积物孔隙水的Ca^2+浓度均随深度明显降低,而Mg2+浓度略微降低,主要与自生碳酸盐矿物沉淀有关。C14的Mg/Ca和Sr/Ca随深度变化指示该柱样沉积物中自生碳酸盐岩矿物主要为高镁方解石。2个柱样的孔隙水地球化学特征显示目前研究区麻坑活动不活跃, C14麻坑中含甲烷流体发生微弱渗漏,可能处于麻坑活动的衰落期。  相似文献   
8.
冯东  陈多福 《现代地质》2008,22(3):390-396
黑海西北部罗马尼亚大陆架(水深120m)和乌克兰陆坡(水深190m)发育冷泉碳酸盐岩结壳。XRD测试表明此结壳主要由高镁方解石和文石组成。结壳中与渗漏系统微生物活动有关的凝块和葡萄状文石等特殊的沉积组构非常发育。冷泉碳酸盐岩酸可溶部分(碳酸盐岩相矿物)的稀土元素含量很低(0.068×10-6~2.817×10-6),稀土元素页岩标准化配分模式显示罗马尼亚大陆架冷泉碳酸盐岩具有明显的Ce负异常,乌克兰陆坡冷泉碳酸盐岩具Ce的正异常,表明它们是分别在氧化和还原环境中沉积的。稀土元素和V、Cd和U等微量元素的含量在泥晶中最高,亮晶中最低,可能反映成岩过程对元素含量有控制作用。  相似文献   
9.
墨西哥湾GC238区冷泉碳酸盐岩的微结构与石化微生物特征   总被引:3,自引:0,他引:3  
采于墨西哥湾GC238海底天然气渗漏区浅表层的冷泉碳酸盐岩呈结核状产出,由方解石微晶和胶结物及少量的黄铁矿构成。胶结物由直径为0.1~0.5m的方解石化的球体、卵形体、棒状体组成,充填于方解石晶体之间。冷泉碳酸盐岩结核下表面发育有由方解石化的球体、卵形体、棒状体组成的薄层,其中的一些球状集合体(约5m)断面显示发育有核和外壳的层圈结构。黄铁矿呈草莓状,也具有相似的层圈结构。这种层状结构与活体古细菌被硫酸盐还原细菌包裹的层圈结构相似。样品中所保存的球体、卵形体、棒状体及其所组成的层圈结构可能是石化的甲烷氧化古细菌和硫酸盐还原细菌。  相似文献   
10.
海洋环境中天然气水合物的形成除了合适的温压条件外,还必须有充分的甲烷供给.本文介绍了甲烷-水体系的甲烷饱和溶解度、水合物体系中甲烷水合物溶解度计算方法.在气-液二相平衡甲烷饱和溶解度计算中,关键在于状态方程的选择和合适的混合规则的运用,Duan的计算模型在温度、压力和盐度变化上都具有很大的适用性,且易于应用.在含水合物的相平衡体系中,在已知组分和假定可能存在相的前提下,可利用模拟退火算法优化总吉布斯自由能,确定是二相还是三相体系,并求解甲烷水合物溶解度.在海水环境下盐的存在使平衡发生移动,利用德拜—休克尔理论或Pitzer电解质溶液理论校正盐度对于海水活度的影响,求解海水环境中甲烷水合物溶解度.基于气-液二相平衡理论的K-K方程,在临近水合物生成条件下实验或计算确定亨利常数等参数后,可计算三相平衡甲烷水合物溶解度,且简单易用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号