首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   8篇
  国内免费   2篇
测绘学   4篇
大气科学   12篇
地球物理   42篇
地质学   41篇
海洋学   20篇
天文学   44篇
自然地理   6篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   2篇
  2018年   17篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   7篇
  2013年   2篇
  2012年   3篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   18篇
  2007年   5篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
1.
Giannini  Alessandra  Kaplan  Alexey 《Climatic change》2019,152(3-4):449-466
Climatic Change - We exploit the multi-model ensemble produced by phase 5 of the Coupled Model Intercomparison Project (CMIP5) to synthesize current understanding of external forcing of Sahel...  相似文献   
2.
The objective of the present paper is to derive a set of analytical equations that describe a swing-by maneuver realized in a system of primaries that are in elliptical orbits. The goal is to calculate the variations of energy, velocity and angular momentum as a function of the usual basic parameters that describe the swing-by maneuver, as done before for the case of circular orbits. In elliptical orbits the velocity of the secondary body is no longer constant, as in the circular case, but it varies with the position of the secondary body in its orbit. As a consequence, the variations of energy, velocity and angular momentum become functions of the magnitude and the angle between the velocity vector of the secondary body and the line connecting the primaries. The “patched-conics” approach is used to obtain these equations. The configurations that result in maximum gains and losses of energy for the spacecraft are shown next, and a comparison between the results obtained using the analytical equations and numerical simulations are made to validate the method developed here.  相似文献   
3.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   
4.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
6.
7.
8.
Journal of Geographical Systems - Colombia is undergoing major changes in mortality patterns. National- and department-level cause-specific analyses have previously been carried out, but very...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号