首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   7篇
地质学   7篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
排序方式: 共有14条查询结果,搜索用时 921 毫秒
1.
2.
A large amount of buildings was damaged or destroyed by the 2011 Great East Japan tsunami. Numerous field surveys were conducted in order to collect the tsunami inundation extents and building damage data in the affected areas. Therefore, this event provides us with one of the most complete data set among tsunami events in history. In this study, fragility functions are derived using data provided by the Ministry of Land, Infrastructure and Transportation of Japan, with more than 250,000 structures surveyed. The set of data has details on damage level, structural material, number of stories per building and location (town). This information is crucial to the understanding of the causes of building damage, as differences in structural characteristics and building location can be taken into account in the damage probability analysis. Using least squares regression, different sets of fragility curves are derived to demonstrate the influence of structural material, number of stories and coastal topography on building damage levels. The results show a better resistant performance of reinforced concrete and steel buildings over wood or masonry buildings. Also, buildings taller than two stories were confirmed to be much stronger than the buildings of one or two stories. The damage characteristic due to the coastal topography based on limited number of data in town locations is also shortly discussed here. At the same tsunami inundation depth, buildings along the Sanriku ria coast were much greater damaged than buildings from the plain coast in Sendai. The difference in damage states can be explained by the faster flow velocities in the ria coast at the same inundation depth. These findings are key to support better future building damage assessments, land use management and disaster planning.  相似文献   
3.
4.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   
5.
Based on the classification provided by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), the damage level of buildings impacted by the 2011 Great East Japan tsunami can be separated into six levels (from minor damage to washed away). The objective of this paper is to identify the significant predictor variables and the direction of their potential relationship to the damage level in order to create a predicting formula for damage level. This study used the detailed data of damaged buildings in Ishinomaki city, Miyagi prefecture, Japan, collected by MLIT. The explanatory variables tested included the inundation depth, number of floors, structural material, and function of the building. Ordinal regression was applied to model the relationship between the ordinal outcome variable (damage level) and the predictors. The findings indicated that inundation depth, structural material, and function of building were significantly associated with the damage level. In addition to this new type of model, this research provides a valuable insight into the relative influence of different factors on building damage and suggestions that may help to revise the classification of current standards. This study can contribute to academic tsunami research by assessing the contribution of different variables to the observed damage using new approaches based on statistical analysis and regression. Moreover, practical applications of these results include understanding of the predominant factors driving tsunami damage to structures, implementation of the relevant variables into the proposed, or alternative model in order to improve current damage predictions by taking into account not only inundation depth, but also variables such as structural material and function of building.  相似文献   
6.

Given the recent historical disastrous tsunamis and the knowledge that the Arabian Gulf (AG) is tectonically active, this study aimed to evaluate tsunami hazards in Kuwait from both submarine earthquakes and subaerial landslides. Despite the low or unknown tsunami risks that impose potential threats to the coastal area’s infrastructures and population of Kuwait, such an investigation is important to sustain the economy and safety of life. This study focused on tsunamis generated by submarine earthquakes with earthquake magnitudes (M w ) of 8.3–9.0 along the Makran Subduction Zone (MSZ) and subaerial landslides with volumes of 0.75–2.0 km3 from six sources along the Iranian coast inside the AG and one source at the Gulf entrance in Oman. The level of tsunami hazards associated with these tsunamigenic sources was evaluated using numerical modeling. Tsunami model was applied to conduct a numerical tsunami simulation and predict tsunami propagation. For landslide sources, a two-layer model was proposed to solve nonlinear longwave equations within two interfacing layers with appropriate kinematic and dynamic boundary conditions. Threat level maps along the coasts of the AG and Kuwait were developed to illustrate the impacts of potential tsunamis triggered by submarine earthquakes of different scales and subaerial landslides at different sources. GEBCO 30 arc-second grid data and others were used as bathymetry and topography data for numerical modeling. Earthquakes of M w 8.3 and M w 8.6 along the MSZ had low and considerable impacts, respectively, at the Gulf entrance, but negligible impacts on Kuwait. An earthquake of M w 9.0 had a remarkable impact for the entire Gulf region and generated a maximum tsunami amplitude of up to 0.5 m along the Kuwaiti coastline 12 h after the earthquake. In the case of landslides inside the AG, the majority impact occurred locally near the sources. The landslide source opposite to Kuwait Bay generated the maximum tsunami amplitudes reaching 0.3 m inside Kuwait Bay and 1.8 m along the southern coasts of Kuwait.

  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号